मराठी

In the Given Figure, a Circle is Inscribed in an Equilateral Triangle Abc of Side 12 Cm. Find the Radius of Inscribed Circle and the Area of the Shaded Region. Use √ 3 = 1.73 , π = 3.14 - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, a circle is inscribed in an equilateral triangle ABC of side 12 cm. Find the radius of inscribed circle and the area of the shaded region.
[Use `sqrt(3)= 1.73, pi = 3.14]`

बेरीज

उत्तर

We can find the radius of the incircle by using the formula

`"r" = 2xx"Area of triangle"/"Perimeter of triangle" = (2xxsqrt(3)/4xx(12)^2)/(3xx12) = 2sqrt(3) "cm"`

Now, area of shaded region = Area of triangle - Area of circle

`= sqrt(3)/4xx(12)^2-3.14xx(2sqrt(3))^2`

=62.28-37.68

= 24.6  cm

Hence, the area of shaded region is 24.6 cm2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Area of Circle, Sector and Segment - Exercise 18A [पृष्ठ ८३५]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 18 Area of Circle, Sector and Segment
Exercise 18A | Q 47 | पृष्ठ ८३५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×