मराठी

Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

बेरीज

उत्तर


Given: Two tangents PQ and PR are drawn from an external points P to a circle with centre O.

To prove: Centre of a circle touching two intersecting lines lies on the angle bisector of angle formed by tangents.

Construction: Join OR and OQ.

In ∆POR and ∆POQ,

∠PRO = ∠PQO = 90°  ...[Tangent at any point of a circle is perpendicular to the radius through the point of contact]

OR = OQ  ...[Radii of same circle]

Since, OP is common

∴ ∆PRO ≅ ∆PQO ...[RHS]

Hence, ∠RPO = ∠QPO  ...[By CPCT]

Thus, O lies on angle bisector of PR and PQ.

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Circles - Exercise 9.3 [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 9 Circles
Exercise 9.3 | Q 4 | पृष्ठ १०७
आरडी शर्मा Mathematics [English] Class 10
पाठ 8 Circles
Exercise 8.2 | Q 49 | पृष्ठ ४१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×