Advertisements
Advertisements
प्रश्न
Solve the following equations for A, if `sqrt3` tan A = 1
उत्तर
`sqrt3` tan A = 1
tan A = `1/sqrt3`
tan A = tan 30°
A = 30°
APPEARS IN
संबंधित प्रश्न
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
Find the value of 'A', if (1 - cosec A)(2 - sec A) = 0
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
If P, Q and R are the interior angles of ΔPQR, prove that `cot(("Q" + "R")/2) = tan "P"/(2)`
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`