मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

The decomposition of A into product has value of k as 4.5 × 103 s−1 at 10°C and energy of activation 60 kJ mol−1. At what temperature would k be 1.5 × 104 s−1? - Chemistry

Advertisements
Advertisements

प्रश्न

The decomposition of A into product has value of k as 4.5 × 103 s−1 at 10°C and energy of activation 60 kJ mol−1. At what temperature would k be 1.5 × 104 s−1?

संख्यात्मक

उत्तर

Given: k1 = 4.5 × 103 s−1

T1 = 273 + 10 = 283 K

k2 = 1.5 × 104 s−1

Ea = 60 kJ mol−1 = 6.0 × 104 J mol−1

From Arrhenius equation, we obtain

log  `"k"_2/"k"_1 = "E"_"a"/(2.303"R")(("T"_2-"T"_1)/("T"_1"T"_2))`

log `(1.5xx10^4)/(4.5xx10^3) = (60000)/(2.303xx8.314) (("T"_2-283) /(283"T"_2))`

or, log 3.333 = 3133.63`("T"_2 - 283)/(283"T"_2)`

or, `0.5228/3133.63 = ("T"_2 - 283)/(283 "T"_2)`

or, 0.0472T2 = T2 − 283

or, T2 = `283/0.9528`

= 297 K

= 297 − 273 

= 24°C

Hence, k would be 1.5 × 104 s−1 at 24°C.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Chemical Kinetics - Exercises [पृष्ठ १२०]

APPEARS IN

एनसीईआरटी Chemistry [English] Class 12
पाठ 4 Chemical Kinetics
Exercises | Q 28 | पृष्ठ १२०

संबंधित प्रश्‍न

 

Consider the reaction

`3I_((aq))^-) +S_2O_8^(2-)->I_(3(aq))^-) + 2S_2O_4^(2-)`

At particular time t, `(d[SO_4^(2-)])/dt=2.2xx10^(-2)"M/s"`

What are the values of the following at the same time?

a. `-(d[I^-])/dt`

b. `-(d[S_2O_8^(2-)])/dt`

c. `-(d[I_3^-])/dt`

 

 

What will be the effect of temperature on rate constant?


The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate Ea.


The activation energy for the reaction \[\ce{2 HI_{(g)} -> H2_{(g)} + I2_{(g)}}\] is 209.5 kJ mol−1 at 581K. Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?


The rate constant for the decomposition of hydrocarbons is 2.418 × 10−5 s−1 at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor?


The rate constant of a first order reaction are 0.58 S-1 at 313 K and 0.045 S-1 at 293 K. What is the energy of activation for the reaction?


A first-order reaction is 50% completed in 40 minutes at 300 K and in 20 minutes at 320 K. Calculate the activation energy of the reaction. (Given : log 2 = 0·3010, log 4 = 0·6021, R = 8·314 JK–1 mol–1)


Explain the following terms :

Half life period of a reaction (t1/2)

 

 

 Write a condition under which a bimolecular reaction is kinetically first order. Give an example of  such a reaction. (Given : log2 = 0.3010,log 3 = 0.4771, log5 = 0.6990).


During decomposition of an activated complex:

(i) energy is always released

(ii) energy is always absorbed

(iii) energy does not change

(iv) reactants may be formed


The reaction between \[\ce{H2(g)}\] and \[\ce{O2(g)}\] is highly feasible yet allowing the gases to stand at room temperature in the same vessel does not lead to the formation of water. Explain.


Why in the redox titration of \[\ce{KMnO4}\] vs oxalic acid, we heat oxalic acid solution before starting the titration?


What happens to most probable kinetic energy and the energy of activation with increase in temperature?


In respect of the eqn k = \[\ce{Ae^{{-E_a}/{RT}}}\] in chemical kinetics, which one of the following statement is correct?


The activation energy in a chemical reaction is defined as ______.


The activation energy of one of the reactions in a biochemical process is 532611 J mol–1. When the temperature falls from 310 K to 300 K, the change in rate constant observed is k300 = x × 10–3 k310. The value of x is ______.

[Given: ln 10 = 2.3, R = 8.3 J K–1 mol–1]


The equation k = `(6.5 xx 10^12 "s"^(-1))"e"^(- 26000 " K"//"T")` is followed for the decomposition of compound A. The activation energy for the reaction is ______ kJ mol-1. (Nearest integer) (Given: R = 8.314 JK-1 mol-1)


An exothermic reaction X → Y has an activation energy 30 kJ mol-1. If energy change ΔE during the reaction is - 20 kJ, then the activation energy for the reverse reaction in kJ is ______.


What happens to the rate constant k and activation energy Ea as the temperature of a chemical reaction is increased? Justify.


It is generally observed that the rate of a chemical reaction becomes double with every 10oC rise in temperature. If the generalisation holds true for a reaction in the temperature range of 298K to 308K, what would be the value of activation energy (Ea) for the reaction?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×