मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Electric Field Associated with a Monochromatic Beam is 1.2 × 1015 Times per Second. Find the Maximum Kinetic Energy of the Photoelectrons - Physics

Advertisements
Advertisements

प्रश्न

The electric field associated with a monochromatic beam is 1.2 × 1015 times per second. Find the maximum kinetic energy of the photoelectrons when this light falls on a metal surface whose work function is 2.0 eV.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

बेरीज

उत्तर

Given :-

Electric field of the monochromatic beam, `E = 1.2 xx 10^15` times per second

Frequency, v = `(1.2 xx 10^15)/2 = 0.6 xx 10^15  "Hz"`

Work function of the metal surface, `phi` = 2.0 eV

From Einstein's photoelectric equation, kinetic energy,

`K = hv - phi_0`

`⇒ K = (6.63 xx 10^-34 xx 0.6 xx 10^15)/(1.6 xx 10^-19) - 2`

`= 0.486  "eV"`

Thus, the maximum kinetic energy of a photon is 0.486 eV.

shaalaa.com
Experimental Study of Photoelectric Effect
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Photoelectric Effect and Wave-Particle Duality - Exercises [पृष्ठ ३६५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 20 | पृष्ठ ३६५

संबंधित प्रश्‍न

The following graph shows the variation of photocurrent for a photosensitive metal : 


(a) Identify the variable X on the horizontal axis.

(b) What does the point A on the horizontal axis represent?

(c) Draw this graph for three different values of frequencies of incident radiation v1, v2 and v3 (v1 > v2 > v3) for same intensity.

(d) Draw this graph for three different values of intensities of incident radiation I1, I2 and I3 (I1 > I2 > I3) having same frequency.


A hot body is placed in a closed room maintained at a lower temperature. Is the number of photons in the room increasing?


It is found that yellow light does not eject photoelectrons from a metal. Is it advisable to try with orange light or with green light?


When stopping potential is applied in an experiment on photoelectric effect, no photoelectric is observed. This means that


When the intensity of a light source in increased,
(a) the number of photons emitted by the source in unit time increases
(b) the total energy of the photons emitted per unit time increases
(c) more energetic photons are emitted
(d) faster photons are emitted


A totally reflecting, small plane mirror placed horizontally faces a parallel beam of light, as shown in the figure. The mass of the mirror is 20 g. Assume that there is no absorption in the lens and that 30% of the light emitted by the source goes through the lens. Find the power of the source needed to support the weight of the mirror.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A sphere of radius 1.00 cm is placed in the path of a parallel beam of light of large aperture. The intensity of the light is 0.5 W cm−2. If the sphere completely absorbs the radiation falling on it, find the force exerted by the light beam on the sphere.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


In an experiment on photoelectric effect, the stopping potential is measured for monochromatic light beams corresponding to different wavelengths. The data collected are as follows:-

Wavelength (nm):         350   400   450   500   550
Stopping potential (V): 1.45  1.00  0.66  0.38  0.16

Plot the stopping potential against inverse of wavelength (1/λ) on a graph paper and find (a) Planck's constant (b) the work function of the emitter and (c) the threshold wavelength.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The electric field associated with a light wave is given by  `E = E_0 sin [(1.57 xx 10^7  "m"^-1)(x - ct)]`. Find the stopping potential when this light is used in an experiment on photoelectric effect with the emitter having work function 1.9 eV.


In the case of photoelectric effect experiment, explain the following facts, giving reasons.
The photoelectric current increases with increase of intensity of incident light.


Define the term: stopping potential in the photoelectric effect.


In photoelectric effect, the photoelectric current started to flow. This means that the frequency of incident radiations is ______.


Consider a metal exposed to light of wavelength 600 nm. The maximum energy of the electron doubles when light of wavelength 400 nm is used. Find the work function in eV.


Two monochromatic beams A and B of equal intensity I, hit a screen. The number of photons hitting the screen by beam A is twice that by beam B. Then what inference can you make about their frequencies?


Consider a thin target (10–2 cm square, 10–3 m thickness) of sodium, which produces a photocurrent of 100 µA when a light of intensity 100W/m2 (λ = 660 nm) falls on it. Find the probability that a photoelectron is produced when a photons strikes a sodium atom. [Take density of Na = 0.97 kg/m3].


Why it is the frequency and not the intensity of the light source that determines whether the emission of photoelectrons will occur or not? Explain.


If photons of ultraviolet light of energy 12 eV are incident on a metal surface of work function of 4 eV, then the stopping potential (in eV) will be :


A metallic plate exposed to white light emits electrons. For which of the following colours of light, the stopping potential will be maximum?


  • Assertion (A): For the radiation of a frequency greater than the threshold frequency, the photoelectric current is proportional to the intensity of the radiation.
  • Reason (R): Greater the number of energy quanta available, the greater the number of electrons absorbing the energy quanta and the greater the number of electrons coming out of the metal.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×