मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Equation of a Travelling Sound Wave is Y = 6.0 Sin (600 T − 1.8 X) Where Y is Measured in 10−5 M, T in Second and X in Metre. (A) Find the Ratio of the Displacement - Physics

Advertisements
Advertisements

प्रश्न

The equation of a travelling sound wave is y = 6.0 sin (600 t − 1.8 x) where y is measured in 10−5 m, t in second and x in metre. (a) Find the ratio of the displacement amplitude of the particles to the wavelength of the wave. (b) Find the ratio of the velocity amplitude of the particles to the wave speed.

बेरीज

उत्तर

Given:
Equation of a travelling sound wave is y = 6.0 sin (600 t − 1.8 x),
where y is measured in 10−5 m,
t in second,
x in metre.
Comparing the given equation with the wave equation, we find:
Amplitude  A = 6 \[\times\]10-5 m

\[(a) \text{ We  have: } \] 

\[  \frac{2\pi}{\lambda} = 1 . 8  \] 

\[ \Rightarrow \lambda = \left( \frac{2\pi}{1 . 8} \right)\] 

\[\text { So,   required  ratio: } \] 

\[  \frac{A}{\lambda} = \frac{6 . 0 \times (1 . 8) \times {10}^{- 5} m/s}{(2\pi)} = 1 . 7 \times  {10}^{- 5}   m\]

(b) Let Vy be the velocity amplitude of the wave.

\[\text { Velocity  v }= \frac{dy}{dt}\] 

\[v = \frac{d\left[ 6  \sin  \left( 600  t - 1 . 8  x \right) \right]}{dt}\] 

\[ \Rightarrow v = 3600  \cos  (600t - 1 . 8x) \times  {10}^{- 5}   m/s\] 

\[\text { Amplitute }  V_y  = 3600 \times  {10}^{- 5} m/s\] 

\[\text { Wavelength: }\] 

\[  \lambda = \frac{2\pi}{1 . 8}\] 

\[\text { Time  period: } \] 

\[T = \frac{2\pi}{\omega}\] 

\[ \Rightarrow   T = \frac{2\pi}{600}\] 

\[\text { Wave  speed  v } = \frac{\lambda}{T}\] 

\[ \Rightarrow v = \frac{600}{1 . 8} = \frac{100}{3}  m/s\] 

\[\text { Required  ratio: } \] 

\[\left( \frac{V_y}{v} \right) = \frac{3600 \times 3 \times {10}^{- 5}}{1000} = 1 . 1 \times  {10}^{- 4}   m\]

shaalaa.com
Wave Motion
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Sound Waves - Exercise [पृष्ठ ३५३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 16 Sound Waves
Exercise | Q 8 | पृष्ठ ३५३

संबंधित प्रश्‍न

The voice of a person, who has inhaled helium, has a remarkably high pitch. Explain on the basis of resonant  vibration of vocal cord filled with air and with helium.


When we clap our hands, the sound produced is best described by Here p denotes the change in pressure from the equilibrium value.


An electrically maintained tuning fork vibrates with constant frequency and constant amplitude. If the temperature of the surrounding air increases but pressure remains constant, the produced will have

(a) larger wavelength
(b) larger frequency
(c) larger velocity
(d) larger time period.


A person can hear sound waves in the frequency range 20 Hz to 20 kHz. Find the minimum and the maximum wavelengths of sound that is audible to the person. The speed of sound is 360 m s−1.


A sources of sound operates at 2.0 kHz, 20 W emitting sound uniformly in all directions. The speed of sound in air is 340 m s−1 and the density of air is 1.2 kg m −3. (a) What is the intensity at a distance of 6.0 m from the source? (b) What will be the pressure amplitude at this point? (c) What will be the displacement amplitude at this point?


A particular guitar wire is 30⋅0 cm long and vibrates at a frequency of 196 Hz when no finger is placed on it. The next higher notes on the scale are 220 Hz, 247 Hz, 262 Hz and 294 Hz. How far from the end of the string must the finger be placed to play these notes?


The two sources of sound, S1 and S2, emitting waves of equal wavelength 20.0 cm, are placed with a separation of 20.0 cm between them. A detector can be moved on a line parallel to S1 S2 and at a distance of 20.0 cm from it. Initially, the detector is equidistant from the two sources. Assuming that the waves emitted by the sources are in detector should be shifted to detect a minimum of sound.


Three sources of sound S1, S2 and S3 of equal intensity are placed in a straight line with S1S2 = S2S3. At a point P, far away from the sources, the wave coming from S2 is 120° ahead in phase of that from S1. Also, the wave coming from S3 is 120° ahead of that from S2. What would be the resultant intensity of sound at P?


In a standing wave pattern in a vibrating air column, nodes are formed at a distance of 4.0 cm. If the speed of sound in air is 328 m s−1, what is the frequency of the source?


Show that if the room temperature changes by a small amount from T to T + ∆T, the fundamental frequency of an organ pipe changes from v to v + ∆v, where \[\frac{∆ v}{v} = \frac{1}{2}\frac{∆ T}{T} .\]


A cylindrical tube, open at both ends, has a fundamental frequency v. The tube is dipped vertically in water so that half of its length is inside the water. The new fundamental frequency is


A traffic policeman standing on a road sounds a whistle emitting the main frequency of 2.00 kHz. What could be the apparent frequency heard by a scooter-driver approaching the policeman at a speed of 36.0 km h−1? Speed of sound in air = 340 m s−1.


A small source of sound oscillates in simple harmonic motion with an amplitude of 17 cm. A detector is placed along the line of motion of the source. The source emits a sound of frequency 800 Hz which travels at a speed of 340 m s−1. If the width of the frequency band detected by the detector is 8 Hz, find the time period of the source.


A boy riding on his bike is going towards east at a speed of 4√2 m s−1. At a certain point he produces a sound pulse of frequency 1650 Hz that travels in air at a speed  of 334 m s−1. A second boy stands on the ground 45° south of east from his. Find the frequency of the pulse as received by the second boy.


A train running at 108 km h−1 towards east whistles at a dominant frequency of 500 Hz. Speed of sound in air is 340 m/s. What frequency will a passenger sitting near the open window hear? (b) What frequency will a person standing near the track hear whom the train has just passed? (c) A wind starts blowing towards east at a speed of 36 km h−1. Calculate the frequencies heard by the passenger in the train and by the person standing near the track.


A person standing on a road sends a sound signal to the driver of a car going away from him at a speed of 72 km h−1. The signal travelling at 330 m s−1 in air and having a frequency of 1600 Hz gets reflected from the body of the car and returns. Find the frequency of the reflected signal as heard by the person.


A car moves with a speed of 54 km h−1 towards a cliff. The horn of the car emits sound of frequency 400 Hz at a speed of 335 m s−1. (a) Find the wavelength of the sound emitted by the horn in front of the car. (b) Find the wavelength of the wave reflected from the cliff. (c) What frequency does a person sitting in the car hear for the reflected sound wave? (d) How many beats does he hear in 10 seconds between the sound coming directly from the horn and that coming after the reflection?


In an experiment to determine the velocity of sound in air at room temperature using a resonance tube, the first resonance is observed when the air column has a length of 20.0 cm for a tuning fork of frequency 400 Hz is used. The velocity of the sound at room temperature is 336 ms-1. The third resonance is observed when the air column has a length of ______ cm.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×