मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

In a Standing Wave Pattern in a Vibrating Air Column, Nodes Are Formed at a Distance of 4.0 Cm. - Physics

Advertisements
Advertisements

प्रश्न

In a standing wave pattern in a vibrating air column, nodes are formed at a distance of 4.0 cm. If the speed of sound in air is 328 m s−1, what is the frequency of the source?

बेरीज

उत्तर

Given:
Distance between two nodes = 4 cm
Speed of sound in air v = 328 ms−1
Frequency of source = ?
Wavelength  λ = 2 × 4.0 = 8 cm
   v = fλ

\[\therefore   f = \frac{v}{\lambda} = \frac{328}{8 \times {10}^{- 2}} = 4 . 1  \text { KHz }\]

Hence, the required frequency of the source is 4.1 KHz.

shaalaa.com
Wave Motion
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Sound Waves - Exercise [पृष्ठ ३५५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 16 Sound Waves
Exercise | Q 38 | पृष्ठ ३५५

संबंधित प्रश्‍न

The wavelengths of two sound waves in air are `81/173`m and `81/170`m. They produce 10 beats per second. Calculate the velocity of sound in air


A string clamped at both ends vibrates in its fundamental mode. Is there any position (except the ends) on the string which can be touched without disturbing the motion? What if the string vibrates in its first overtone?


The voice of a person, who has inhaled helium, has a remarkably high pitch. Explain on the basis of resonant  vibration of vocal cord filled with air and with helium.


When we clap our hands, the sound produced is best described by Here p denotes the change in pressure from the equilibrium value.


Two sound waves move in the same direction in the same medium. The pressure amplitudes of the waves are equal but the wavelength of the first wave is double the second. Let the average power transmitted across a cross section by the first wave be P1 and that by the second wave be P2. Then


A tuning fork of frequency 512 Hz is vibrated with a sonometer wire and 6 beats per second are heard. The beat frequency reduces if the tension in the string is slightly increased. The original frequency of vibration of the string is


The fundamental frequency of a vibrating organ pipe is 200 Hz.

(a) The first overtone is 400 Hz.
(b) The first overtone may be 400 Hz.
(c) The first overtone may be 600 Hz.
(d) 600 Hz is an overtone.


A person can hear sound waves in the frequency range 20 Hz to 20 kHz. Find the minimum and the maximum wavelengths of sound that is audible to the person. The speed of sound is 360 m s−1.


Two point sources of sound are kept at a separation of 10 cm. They vibrate in phase to produce waves of wavelength 5.0 cm.  What would be the phase difference between the two waves arriving at a point 20 cm from one source (a) on the line joining the sources and (b) on the perpendicular bisector of the line joining the sources?


At what temperature will the speed of sound be double of its value at 0°C?


Calculate the bulk modulus of air from the following data about a sound wave of wavelength 35 cm travelling in air. The pressure at a point varies between (1.0 × 105 ± 14) Pa and the particles of the air vibrate in simple harmonic motion of amplitude 5.5 × 10−6 m.


The sound level at a point 5.0 m away from a point source is 40 dB. What will be the level at a point 50 m away from the source?


If the intensity of sound is doubled, by how many decibels does the sound level increase?


A string, fixed at both ends, vibrates in a resonant mode with a separation of 2⋅0 cm between the consecutive nodes. For the next higher resonant frequency, this separation is reduced to 1⋅6 cm. Find the length of the string.


A uniform horizontal rod of length 40 cm and mass 1⋅2 kg is supported by two identical wires as shown in figure. Where should a mass of 4⋅8 kg be placed on the rod so that the same tuning fork may excite the wire on left into its fundamental vibrations and that on right into its first overtone? Take g = 10 m s−2.


Two coherent narrow slits emitting sound of wavelength λ in the same phase are placed parallel to each other at a small separation of 2λ. The sound is detected by moving a detector on the screen ∑ at a distance D(>>λ) from the slit S1 as shown in figure. Find the distance x such that the intensity at P is equal to the intensity at O.


Two electric trains run at the same speed of 72 km h−1 along the same track and in the same direction with separation of 2.4 km between them. The two trains simultaneously sound brief whistles. A person is situated at a perpendicular distance of 500 m from the track and is equidistant from the two trains at the instant of the whistling. If both the whistles were at 500 Hz and the speed of sound in air is 340 m s−1, find the frequencies heard by the person.


A small source of sound S of frequency 500 Hz is attached to the end of a light string and is whirled in a vertical circle of radius 1.6 m. The string just remains tight when the source is at the highest point. (a) An observer is located in the same vertical plane at a large distance and at the same height as the centre of the circle. The speed of sound in air = 330 m s−1 and = 10 m s−2. Find the maximum frequency heard by the observer. (b) An observer is situated at a large distance vertically above the centre of the circle. Find the frequency heard by the observer corresponding to the sound emitted by the source when it is at the same height as the centre.


During propagation of a plane progressive mechanical wave ______.

  1. all the particles are vibrating in the same phase.
  2. amplitude of all the particles is equal.
  3. particles of the medium executes S.H.M.
  4. wave velocity depends upon the nature of the medium.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×