मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

The refractive index of diamond is much greater than that of ordinary glass. Is this fact of some use to a diamond cutter? - Physics

Advertisements
Advertisements

प्रश्न

The refractive index of diamond is much greater than that of ordinary glass. Is this fact of some use to a diamond cutter?

टीपा लिहा

उत्तर

Yes

The refractive index of diamond (2.42) is more than that of ordinary glass (1.5). The critical angle for diamond is less than that for glass. A diamond cutter uses a large angle of incidence to ensure that the light entering the diamond is totally reflected from its face. This is the reason for the sparkling effect of a diamond.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Ray Optics and Optical Instruments - Exercise [पृष्ठ ३४६]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 9 Ray Optics and Optical Instruments
Exercise | Q 9.18 (e) | पृष्ठ ३४६
एनसीईआरटी Physics [English] Class 12
पाठ 9 Ray Optics and Optical Instruments
Exercise | Q 18.5 | पृष्ठ ३४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

A small pin fixed on a table top is viewed from above from a distance of 50 cm. By what distance would the pin appear to be raised if it is viewed from the same point through a 15 cm thick glass slab held parallel to the table? Refractive index of glass = 1.5. Does the answer depend on the location of the slab?


A narrow beam of light passes through a slab obliquely and is then received by an eye following figure. The index of refraction of the material in the slab fluctuates slowly with time. How will it appear to the eye? The twinkling of stars has a similar explanation.


A narrow beam of white light goes through a slab having parallel faces.

(a) The light never splits in different colours

(b) The emergent beam is white

(c) The light inside the slab is split into different colours

(d) The light inside the slab is white


Consider the situation in figure. The bottom of the pot is a reflecting plane mirror, S is a small fish and T is a human eye. Refractive index of water is μ. (a) At what distance(s) from itself will the fish see the image(s) of the eye? (b) At what distance(s) from itself will the eye see the image(s) of the fish.


Locate the image formed by refraction in the situation shown in figure.


What is optical path? Obtain the equation for optical path of a medium of thickness d and refractive index n.


What is relative refractive index?


What is Snell’s window?


Derive the equation for acceptance angle and numerical aperture, of optical fiber.


Obtain the equation for lateral displacement of light passing through a glass slab.


An object is immersed in a fluid of refractive index 'µ'. In order that the object becomes invisible when observed from outside, it should ______.


When a light ray is incident on a prism at an angle of 45°, the minimum deviation is obtained. If refractive index of material of prism is `sqrt2`, then angle of prism will be ______.

`sin  pi/4=1/sqrt2, sin30^circ=cos60^circ=1/2`


A ray of light passes through equilateral prism such that the angle of incidence is equal to angle of emergence and each of these angles is equal to `(3/4)^"th"` the angle of prism. The angle of deviation is ______.


The critical angle is maximum when light travels from ______.

`(a^mu"w"=4/3,a^mug=3/2)`


When a ray of light is incident normally on one refracting surface of an equilateral prism of refractive index 1.5, the emerging ray ______.

`[sin^-1(1/1.5)=41.8^circ]`


Light travels from an optically denser medium 'A' into the optically rarer medium 'B' with speeds 1.8 × 108 m/s and 2.7 × 108 m/s respectively. Then critical angle between them is ______.

1 and µ2 are the refractive indices of media A and B respectively.)


Light travels in two media A and B with speeds 1.8 × 108 ms−1 and 2.4 × 108 ms−1 respectively. Then the critical angle between them is:


The optical density of turpentine is higher than that of water while its mass density is lower. Figure shows a layer of turpentine floating over water in a container. For which one of the four rays incident on turpentine in figure, the path shown is correct?


A circular disc of radius ‘R’ is placed co-axially and horizontally inside an opaque hemispherical bowl of radius ‘a’ (Figure). The far edge of the disc is just visible when viewed from the edge of the bowl. The bowl is filled with transparent liquid of refractive index µ and the near edge of the disc becomes just visible. How far below the top of the bowl is the disc placed?


A beam of light travels from air into a medium. Its speed and wavelength in the medium are 1.5 × 108 ms-1 and 230 nm respectively. The wavelength of light in the air will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×