मराठी

Two Straight Roads Ab and Cd Cross Each Other at Pat an Angle of 75• . - Mathematics

Advertisements
Advertisements

प्रश्न

Two straight roads AB and CD cross each other at Pat an angle of 75°  . X is a stone on the road AB, 800m from P towards B. BY taking an appropriate scale draw a figure to locate the position of a pole, which is equidistant from P and X, and is also equidistant from the roads. 

बेरीज

उत्तर

Steps of construction: 

(i) Draw two lines AB and CD crossing at an angle of 75 °

(ii) Draw an angle bisector for  ∠ BPD 

(iii) Draw perpendicular from X on angle bisector meeting at 0. 

(iv) From point Y, PX = PY, draw a perpendicular on angle bisector meeting at 0. 

(v) 0 is the point which is equidistant from P, X and both the roads. 

cos θ = `"hypotenuse"/"base"`

cos `75/2 = "PO"/"PX"`

cos (37.5) = `"PO"/800`

0.980243 = `"PO"/800`

PO = 784.19 m

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Loci - Exercise 16.1

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Describe the locus of vertices of all isosceles triangles having a common base.


Ruler and compasses may be used in this question. All construction lines and arcs must be clearly shown and be of sufficient length and clarity to permit assessment.

  1. Construct a ΔABC, in which BC = 6 cm, AB = 9 cm and angle ABC = 60°.
  2. Construct the locus of all points inside triangle ABC, which are equidistant from B and C.
  3. Construct the locus of the vertices of the triangles with BC as base and which are equal in area to triangle ABC.
  4. Mark the point Q, in your construction, which would make ΔQBC equal in area to ΔABC, and isosceles.
  5. Measure and record the length of CQ.

Draw a straight line AB of 9 cm. Draw the locus of all points which are equidistant from A and B. Prove your statement. 


In  Δ PQR, s is a point on PR such that ∠ PQS = ∠  RQS . Prove thats is equidistant from PQ and QR. 


In given figure 1 ABCD is an arrowhead. AB = AD and BC = CD. Prove th at AC produced bisects BD at right angles at the point M


Draw and describe the lorus in  the following cases: 

The locus of points at a distance of 4 cm from a fixed line. 


Describe completely the locus of point in  the following cases: 

Midpoint of radii of a circle. 


Describe completely the locus of points in the following cases: 

Point in a plane equidistant from a given line. 


Use ruler and compass only for the following question. All construction lines and arcs must be clearly shown.

  1. Construct a ΔABC in which BC = 6.5 cm, ∠ABC = 60°, AB = 5 cm.
  2. Construct the locus of points at a distance of 3.5 cm from A.
  3. Construct the locus of points equidistant from AC and BC.
  4. Mark 2 points X and Y which are at a distance of 3.5 cm from A and also equidistant from AC and BC. Measure XY.

Use ruler and compasses only for the following questions:
Construct triangle BCP, when CB = 5 cm, BP = 4 cm, ∠PBC = 45°.
Complete the rectangle ABCD such that :
(i) P is equidistant from AB and BC and
(ii) P is equidistant from C and D. Measure and write down the length of AB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×