मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

What is meant by simple harmonic oscillation? Give examples and explain why every simple harmonic motion is a periodic motion whereas the converse need not be true. - Physics

Advertisements
Advertisements

प्रश्न

What is meant by simple harmonic oscillation? Give examples and explain why every simple harmonic motion is a periodic motion whereas the converse need not be true.

दीर्घउत्तर

उत्तर

Simple harmonic motion is a special type of oscillatory motion in which the acceleration or force on the particle is directly proportional to its displacement from a fixed point and is always directed towards that fixed point. In one dimensional case, let x be the displacement of the particle and ax be the acceleration of the particle, then

ax ∝ x .................(1)

ax = −bx ...............(2)

where b is a constant which measures acceleration per unit displacement and dimensionally it is equal to T-2.

By multiplying by the mass of the particle on both sides of equation (1) and from Newton’s second law, the force is

Fx = −kx ….........(3)

where k is a force constant which is defined as force per unit length. The negative sign indicates that displacement and force (or acceleration) are in opposite directions. This means that when the displacement of the particle is taken towards the right of equilibrium position (x takes positive value), the force (or acceleration) will point towards equilibrium (towards left) and similarly, when the displacement of the particle is taken towards left of equilibrium position (x takes negative value), the force (or acceleration) will point towards equilibrium (towards right). This type of force is known as restoring force because it always directs the particle executing simple harmonic motion to restore to its original (equilibrium or mean) position. This force (restoring force) is central and attractive whose center of attraction is the equilibrium position.

In order to represent in two or three dimensions, we can write using vector notation

`vec"F" = -"k"vec("r")` ...(4)

where `vec"r"` is the displacement of the particle from the chosen origin. Note that the force and displacement have a linear relationship. This means that the exponent of force `vec"F"` and the exponent of displacement `vec"r"` are unity. The sketch between cause (magnitude of force `vec|"F"|`) and effect (magnitude of displacement `vec|"r"|`) is a straight line passing through the second and fourth quadrant.

By measuring slope `1/"k"`, one can find the numerical value of force constant k.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Oscillations - Evaluation [पृष्ठ २२०]

APPEARS IN

सामाचीर कलवी Physics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 10 Oscillations
Evaluation | Q III. 1. | पृष्ठ २२०

संबंधित प्रश्‍न

Assuming the expression for displacement of a particle starting from extreme position, explain graphically the variation of velocity and acceleration w.r.t. time.


A particle executes simple harmonic motion. If you are told that its velocity at this instant is zero, can you say what is its displacement? If you are told that its velocity at this instant is maximum, can you say what is its displacement?


A hollow sphere filled with water is used as the bob of a pendulum. Assume that the equation for simple pendulum is valid with the distance between the point of suspension and centre of mass of the bob acting as the effective length of the pendulum. If water slowly leaks out of the bob, how will the time period vary?


The time period of a particle in simple harmonic motion is equal to the smallest time between the particle acquiring a particular velocity \[\vec{v}\] . The value of v is


Which of the following will change the time period as they are taken to moon?
(a) A simple pendulum
(b) A physical pendulum
(c) A torsional pendulum
(d) A spring-mass system


A simple pendulum of length l is suspended through the ceiling of an elevator. Find the time period of small oscillations if the elevator (a) is going up with and acceleration a0(b) is going down with an acceleration a0 and (c) is moving with a uniform velocity.


A simple pendulum of length 1 feet suspended from the ceiling of an elevator takes π/3 seconds to complete one oscillation. Find the acceleration of the elevator.


Write short notes on two springs connected in series.


Consider two simple harmonic motion along the x and y-axis having the same frequencies but different amplitudes as x = A sin (ωt + φ) (along x-axis) and y = B sin ωt (along y-axis). Then show that

`"x"^2/"A"^2 + "y"^2/"B"^2 - (2"xy")/"AB" cos φ = sin^2 φ`

and also discuss the special cases when

  1. φ = 0
  2. φ = π
  3. φ = `π/2`
  4. φ = `π/2` and A = B
  5. φ = `π/4`

Note: when a particle is subjected to two simple harmonic motions at right angle to each other the particle may move along different paths. Such paths are called Lissajous figures.


Assume there are two identical simple pendulum clocks. Clock - 1 is placed on the earth and Clock - 2 is placed on a space station located at a height h above the earth's surface. Clock - 1 and Clock - 2 operate at time periods 4 s and 6 s respectively. Then the value of h is ______.

(consider the radius of earth RE = 6400 km and g on earth 10 m/s2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×