मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R. f(x)=3-x9-x,x0 - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (3 - sqrt(x))/(9 - x), x_0` = 9

बेरीज

उत्तर

The function f(x) is not defined at x = 9.

`lim_(x -> ) f(x) =  lim_(x -> 9) (3 - sqrt(x))/(9 - x)`

= `lim_(x -> 9) (3 - sqrt(x))/(3^2 - (sqrt(x))^2`

=`lm_(x -> 9) (3 - sqrt(x))/((3+ sqrt(x))(3 - sqrt(x))`

= `lim_ (x -> 9) 1/(3 + sqrt(x))`

= `1/(3 + sqrt(9))`

= `1/(3 + 3)`

`lim_(x -> 9) f(x) = 1/6`

∴ Limit of the function f(x) exists at x = 9.

Hence, the function f(x) has a removable discontinuity at x = 9. Redefine the function f(x) as

`g(x) = {{:((3 - sqrt(x))/(9 - x),  "if"  x ≠ 9),(1/6, "if"  x = 9):}`

Clearly, g(x) is defined at all points of R and is continuous on R.

shaalaa.com
Continuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [पृष्ठ १२८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 11. (iii) | पृष्ठ १२८

संबंधित प्रश्‍न

Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in R


Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

e2x + x2


Examine the continuity of the following:

x . log x


Examine the continuity of the following:

`(x^2 - 16)/(x + 4)`


Examine the continuity of the following:

|x + 2| + |x – 1|


Examine the continuity of the following:

`|x - 2|/|x + 1|`


Examine the continuity of the following:

cot x + tan x


Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",",  "if",  x ≤ 3),(4x - 5",",  "if",  x > 3):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(x + 2",",  "if",  x ≥ 2),(x^2",",  "if",  x < 2):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if"  x ≠ 3),(5",", "if"  x = 3):}`


Let `f(x) = {{:(0",",  "if"  x < 0),(x^2",",  "if"  0 ≤ x ≤ 2),(4",",  "if"  x ≥ 2):}`. Graph the function. Show that f(x) continuous on `(- oo, oo)`


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^2 - 2x - 8)/(x + 2), x_0` = – 2


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


The function `f(x) = (x^2 - 1)/(x^3 - 1)` is not defined at x = 1. What value must we give f(1) inorder to make f(x) continuous at x =1?


Choose the correct alternative:

Let the function f be defined by `f(x) = {{:(3x, 0 ≤ x ≤ 1),(-3 + 5, 1 < x ≤ 2):}`, then


Choose the correct alternative:

If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to


Choose the correct alternative:

Let f : R → R be defined by `f(x) = {{:(x, x  "is irrational"),(1 - x, x  "is rational"):}` then f is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×