English

A Farmer Mixes Two Brands P and Q of Cattle Feed. Brand P, Costing ₹250 per Bag, Contains 2 Units of Nutritional Element A, 2.5 Units of Element B and 2 Units of Element C - Mathematics

Advertisements
Advertisements

Question

A farmer mixes two brands P and Q of cattle feed. Brand P, costing ₹250 per bag, contains 2 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing ₹200 per bag contains 1.5 units of nutritional element A, 11.25 units of element B and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?

Sum

Solution

Let x bags of brand P and bags of brand Q should be mixed to produce the mixture.

Each bag of brand P costs ₹250 and each bag of brand Q costs ₹200. Therefore, x bags of brand P and bags of brand Q costs ₹(250x + 200y).
 
Since each bag of brand P contains 3 units of nutritional element A and each bag of brand Q contains 1.5 units of nutritional element A, therefore, x bag of brand P and y bag of brand Q will contain (3x + 1.5y) units of nutritional element A. But, the minimum requirement of nutrients A is 18 units.

∴ 3x + 1.5≥ 18

⇒ 2x + ≥ 12

Similarly, x bag of brand P and y bag of brand Q will contain (2.5x + 11.25y) units of nutritional element B. But, the minimum requirement of nutrients B is 45 units.

∴ 2.5x + 11.25≥ 45

⇒ 2x + 9≥ 36

Also, x bag of brand P and y bag of brand Q will contain (2x + 3y) units of nutritional element B. But, the minimum requirement of nutrients C is 24 units.

∴ 2x + 3≥ 24

Thus, the given linear programming problem is

Minimise Z = 250x + 200y

subject to the constraints

2x + ≥ 12

2x + 9≥ 36

2x + 3≥ 24

x, y ≥ 0

The feasible region determined by the given constraints can be diagrammatically represented as,


The coordinates of the corner points of the feasible region are A(18, 0), B(9, 2), C(3, 6) and D(0, 12).

The value of the objective function at these points are given in the following table.
 

Corner Point Z = 250x + 200y
(18, 0)      250 × 18 + 200 × 0 = 4500   
(9, 2) 250 × 9 + 200 × 2 = 2650
(3, 6)  250 × 3 + 200 × 6 = 1950  → Minimum                     
(0, 12)   250 × 0 + 200 × 12 = 2400


The smallest value of Z is 1950 which is obtained at (3, 6).

It can be seen that the open half-plane represented by 250x + 200y < 1950 or 5x + 4y < 39 has no common points with the feasible region.

So, 3 bags of brand P and 6 bags of brand Q should be used in the mixture to minimise the cost. 

Hence, the minimum cost of the mixture per bag is ₹1950.

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Linear programming - Exercise 30.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 30 Linear programming
Exercise 30.3 | Q 13 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A cooperative society of farmers has 50 hectares of land to grow two crops A and B. The profits from crops A and B per hectare are estimated as Rs 10,500 and Rs 9,000 respectively. To control weeds, a liquid herbicide has to be used for crops A and B at the rate of 20 litres and 10 litres per hectare, respectively. Further not more than 800 litres of herbicide should be used in order to protect fish and wildlife using a pond which collects drainage from this land. Keeping in mind that the protection of fish and other wildlife is more important than earning profit, how much land should be allocated to each crop so as to maximize the total profit? Form an LPP from the above and solve it graphically. Do you agree with the message that the protection of wildlife is utmost necessary to preserve the balance in environment?


There are two types of fertilisers 'A' and 'B'. 'A' consists of 12% nitrogen and 5% phosphoric acid whereas 'B' consists of 4% nitrogen and 5% phosphoric acid. After testing the soil conditions, farmer finds that he needs at least 12 kg of nitrogen and 12 kg of phosphoric acid for his crops. If 'A' costs Rs 10 per kg and 'B' cost Rs 8 per kg, then graphically determine how much of each type of fertiliser should be used so that nutrient requirements are met at a minimum cost


A retired person wants to invest an amount of Rs. 50, 000. His broker recommends investing in two type of bonds ‘A’ and ‘B’ yielding 10% and 9% return respectively on the invested amount. He decides to invest at least Rs. 20,000 in bond ‘A’ and at least Rs. 10,000 in bond ‘B’. He also wants to invest at least as much in bond ‘A’ as in bond ‘B’. Solve this linear programming problem graphically to maximise his returns.


A dietician wishes to mix two kinds ·of food X· and Y in such a way that the  mixture contains at least 10 units of vitamin A, 12 units of vitamin B arid 8 units of vitamin C. The vitamin contents of one kg food is given below:

Food Vitamin A Vitamin.B Vitamin C
X 1 unit 2 unit 3 unit
Y 2 unit 2 unit 1 unit

Orie kg of food X costs Rs 24 and one kg of food Y costs Rs 36. Using Linear Programming, find the least cost of the total mixture. which will contain the required vitamins.


Maximize Z = 5x + 3y
Subject to

\[3x + 5y \leq 15\]
\[5x + 2y \leq 10\]
\[ x, y \geq 0\]


Maximize Z = 10x + 6y
Subject to

\[3x + y \leq 12\]
\[2x + 5y \leq 34\]
\[ x, y \geq 0\]


Maximize Z = 3x + 5y
Subject to

\[x + 2y \leq 20\]
\[x + y \leq 15\]
\[ y \leq 5\]
\[ x, y \geq 0\]


Show the solution zone of the following inequalities on a graph paper:

\[5x + y \geq 10\]

\[ x + y \geq 6\]

\[x + 4y \geq 12\]

\[x \geq 0, y \geq 0\]

Find x and y for which 3x + 2y is minimum subject to these inequalities. Use a graphical method.


Find the maximum and minimum value of 2x + y subject to the constraints:
x + 3y ≥ 6, x − 3y ≤ 3, 3x + 4y ≤ 24, − 3x + 2y ≤ 6, 5x + y ≥ 5, xy ≥ 0.


A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 of calories. Two foods A and B, are available at a cost of Rs 4 and Rs 3 per unit respectively. If one unit of A contains 200 units of vitamin, 1 unit of mineral and 40 calories and one unit of food B contains 100 units of vitamin, 2 units of minerals and 40 calories, find what combination of foods should be used to have the least cost?


A fruit grower can use two types of fertilizer in his garden, brand P and Q. The amounts (in kg) of nirogen, phosphoric acid, potash, and chlorine in a bag of each brand are given in the table. Tests indicates that the garden needs at least 240 kg of phosphoric acid, at least 270 kg of potash and at most 310 kg of chlorine.
 

kg per bag
  Brand P Brand P
Nitrogen 3 3.5
Phosphoric acid 1 2
Potash 3 1.5
Chlorine 1.5 2


If the grower wants to minimize the amount of nitrogen added to the garden, how many bags of each brand should be used? What is the minimum amount of nitrogen added in the garden?


A company produces two types of leather belts, say type A and B. Belt A is a superior quality and belt B is of a lower quality. Profits on each type of belt are Rs 2 and Rs 1.50 per belt, respectively. Each belt of type A requires twice as much time as required by a belt of type B. If all belts were of type B, the company could produce 1000 belts per day. But the supply of leather is sufficient only for 800 belts per day (both A and B combined). Belt A requires a fancy buckle and only 400 fancy buckles are available for this per day. For belt of type B, only 700 buckles are available per day.
How should the company manufacture the two types of belts in order to have a maximum overall profit?


A company produces two types of goods, A and B, that require gold and silver. Each unit of type A requires 3 gm of silver and 1 gm of gold while that of type B requires 1 gm of silver and 2 gm of gold. The company can produce 9 gm of silver and 8 gm of gold. If each unit of type A brings a profit of Rs 40 and that of type B Rs 50, find the number of units of each type that the company should produce to maximize the profit. What is the maximum profit?


A manufacturer of Furniture makes two products : chairs and tables. processing of these products is done on two machines A and B. A chair requires 2 hrs on machine A and 6 hrs on machine B. A table requires 4 hrs on machine A and 2 hrs on machine B. There are 16 hrs of time per day available on machine A and 30 hrs on machine B. Profit gained by the manufacturer from a chair and a table is Rs 3 and Rs 5 respectively. Find with the help of graph what should be the daily production of each of the two products so as to maximize his profit.


A man owns a field of area 1000 sq.m. He wants to plant fruit trees in it. He has a sum of Rs 1400 to purchase young trees. He has the choice of two types of trees. Type A requires 10 sq.m of ground per tree and costs Rs 20 per tree and type B requires 20 sq.m of ground per tree and costs Rs 25 per tree. When fully grown, type A produces an average of 20 kg of fruit which can be sold at a profit of Rs 2.00 per kg and type B produces an average of 40 kg of fruit which can be sold at a profit of Rs. 1.50 per kg. How many of each type should be planted to achieve maximum profit when the trees are fully grown? What is the maximum profit?


A firm manufactures two types of products A and B and sells them at a profit of Rs 5 per unit of type A and Rs 3 per unit of type B. Each product is processed on two machines M1 and M2. One unit of type A requires one minute of processing time on M1 and two minutes of processing time on M2, whereas one unit of type B requires one minute of processing time on M1 and one minute on M2. Machines M1 and M2 are respectively available for at most 5 hours and 6 hours in a day. Find out how many units of each type of product should the firm produce a day in order to maximize the profit. Solve the problem graphically. 


A manufacturer makes two products, A and B. Product A sells at Rs 200 each and takes 1/2 hour to make. Product B sells at Rs 300 each and takes 1 hour to make. There is a permanent order for 14 units of product A and 16 units of product B. A working week consists of 40 hours of production and the weekly turn over must not be less than Rs 10000. If the profit on each of product A is Rs 20 and an product B is Rs 30, then how many of each should be produced so that the profit is maximum? Also find the maximum profit.

 


A small firm manufactures gold rings and chains. The total number of rings and chains manufactured per day is at most 24. It takes 1 hour to make a ring and 30 minutes to make a chain. The maximum number of hours available per day is 16. If the profit on a ring is Rs 300 and that on a chain is Rs 190, find the number of rings and chains that should be manufactured per day, so as to earn the maximum profit. Make it as an LPP and solve it graphically.


A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftman's time in its making while a cricket bat takes 3 hours of machine time and 1 hour of craftman's time. In a day, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftman's time. If the profit on a racket and on a bat is Rs 20 and Rs 10 respectively, find the number of tennis rackets and cricket bats that the factory must manufacture to earn the maximum profit. Make it as an LPP and solve it graphically.


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:
 

Types of Toys Machines
  I II III
A 12 18 6
B 6 0 9
 
Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is ₹7.50 and that on each toy of type B is ₹5, show that 15 toys of type A and 30 toys of type B should be manufactured in a day to get maximum profit.

By graphical method, the solution of linear programming problem

\[\text{Maximize}\text{ Z }= 3 x_1 + 5 x_2 \]
\[\text{ Subject }  to \text{ 3 } x_1 + 2 x_2 \leq 18\]
\[ x_1 \leq 4\]
\[ x_2 \leq 6\]
\[ x_1 \geq 0, x_2 \geq 0, \text{ is } \]

From the details given below, calculate the five-year moving averages of the number of students who have studied in a school. Also, plot these and original data on the same graph paper.

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Number of Students 332 317 357 392 402 405 410 427 405 438

Sketch the graph of inequation x ≥ 5y in xoy co-ordinate system


The maximum value of z = 6x + 8y subject to x - y ≥ 0, x + 3y ≤ 12, x ≥ 0, y ≥ 0 is ______.


For L.P.P. maximize z = 4x1 + 2x2 subject to 3x1 + 2x2 ≥ 9, x1 - x2 ≤ 3, x1 ≥ 0, x2 ≥ 0 has ______.


The maximum value of Z = 5x + 4y, Subject to y ≤ 2x, x ≤ 2y, x + y ≤ 3, x ≥ 0, y ≥ 0 is ______.


If 4x + 5y ≤ 20, x + y ≥ 3, x ≥ 0, y ≥ 0, maximum 2x + 3y is ______.


A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of an L.P.P. is called its ____________.


A feasible solution to a linear programming problem


Which of the statements describe the solution set for `-2(x + 8) = - 2x + 20`?


The comer point of the feasible region determined by the following system of linear inequalities:

2x + y ≤ 10, x + 3y ≤ 15, x, y ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let x = Px + qx where P, q > 0 condition on P and Q so that the maximum of z occurs at both (3, 4) and (0, 5) is


Any point in the feasible region that gives the optional value (maximum or minimum) of the objective function is called:-


The corner points of the feasible region of a linear programming problem are (0, 4), (8, 0) and `(20/3, 4/3)`. If Z = 30x + 24y is the objective function, then (maximum value of Z – minimum value of Z) is equal to ______.


Minimize z = x + 2y,

Subject to x + 2y ≥ 50, 2x – y ≤ 0, 2x + y ≤ 100, x ≥ 0, y ≥ 0.


Aman has ₹ 1500 to purchase rice and wheat for his grocery shop. Each sack of rice and wheat costs ₹ 180 and Rupee ₹ 120 respectively. He can store a maximum number of 10 bags in his shop. He will earn a profit of ₹ 11 per bag of rice and ₹ 9 per bag of wheat.

  1. Formulate a Linear Programming Problem to maximise Aman’s profit.
  2. Calculate the maximum profit.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×