English
Karnataka Board PUCPUC Science Class 11

A Narrow Pencil of Parallel Light is Incident Normally on a Solid Transparent Sphere of Radius R. What Should Be the Refractive Index is the Pencil is to Be Focussed - Physics

Advertisements
Advertisements

Question

A narrow pencil of parallel light is incident normally on a solid transparent sphere of radius r. What should be the refractive index is the pencil is to be focussed (a) at the surface of the sphere, (b) at the centre of the sphere.

Sum

Solution

Given,
The radius of the transparent sphere = r
Refraction at convex surface.
As per the question,
u = −∞, μ1 = 1, μ2 = ?

(a) When image is to be focused on the surface,
Image distance (v) = 2r, Radius of curvature (R) = r
We know that,

\[\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}\] 

\[ \Rightarrow \frac{\mu_2}{2r} - \left( \frac{1}{- \infty} \right) = \frac{\mu_2 - 1}{r}\] 

\[ \Rightarrow \frac{\mu_2}{2r} = \frac{\mu_2 - 1}{r}\] 

\[ \Rightarrow  \mu_2  = 2 \mu_2  - 2\] 

\[ \Rightarrow  \mu_2  = 2\]

(b) When the image is to be focused at the centre,
Image distance (v) = r, Radius of curvature (R) = r

\[\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}\] 

\[ \Rightarrow \frac{\mu_2}{r} - \left( \frac{1}{- \infty} \right) = \frac{\mu_2 - 1}{r}\] 

\[ \Rightarrow \frac{\mu_2}{r} = \frac{\mu_2 - 1}{r}\] 

\[ \Rightarrow  \mu_2  =  \mu_2  - 1\] 
The above equation is impossible.
Hence, the image cannot be focused at centre.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Geometrical Optics - Exercise [Page 415]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 18 Geometrical Optics
Exercise | Q 42 | Page 415

RELATED QUESTIONS

Can mirrors give rise to chromatic aberration?


In image formation from spherical mirrors, only paraxial rays are considered because they


The image of an extended object, placed perpendicular to the principal axis of a mirror, will be erect if
(a) the object and the image are both real
(b) the object and the image are both virtual
(c) the object is real but the image is virtual
(d) the object is virtual but the image is real.


A spherical surface of radius 30 cm separates two transparent media and B with refractive indices 1.33 and 1.48 respectively. The medium A is on the convex side of the surface. Where should a point object be placed in medium A so that the paraxial rays become parallel after refraction at the surface?


A converging lens and a diverging mirror are placed at a separation of 15 cm. The focal length of the lens is 25 cm and that of the mirror is 40 cm. Where should a point source be placed between the lens and the mirror so that the light, after getting reflected by the mirror and then getting transmitted by the lens, comes out parallel to the principal axis?


Consider the situation shown in figure. The elevator is going up with an acceleration of 2.00 m s−2 and the focal length of the mirror is 12.0 cm. All the surfaces are smooth and the pulley is light. The mass-pulley system is released from rest (with respect to the elevator) at t = 0 when the distance of B from the mirror is 42.0 cm. Find the distance between the image of the block B and the mirror at t = 0.200 s. Take g = 10 m s−2.


How can the spherical aberration produced by a lens be minimized? 


State how the focal length of a glass lens (Refractive Index 1.5) changes when it is completely immersed in: 

(i) Water (Refractive Index 1.33)
(ii) A liquid (Refractive Index 1.65)


Focal length of a mirror is given by ______.


A parallel beam of light ray parallel to the x-axis is incident on a parabolic reflecting surface x = 2by2 as shown in the figure. After reflecting it passes through focal point F. What is the focal length of the reflecting surface?


The intensity of a point source of light, S, placed at a distance d in front of a screen A, is I0 at the center of the screen. Find the light intensity at the center of the screen if a completely reflecting plane mirror M is placed at a distance d behind the source, as shown in the figure.


A short object of length L is placed along the principal axis of a concave mirror away from focus. The object distance is u. If the mirror has a focal length f, what will be the length of the image? You may take L << |v – f|.


A thin convex lens of focal length 25 cm is cut into two pieces 0.5 cm above the principal axis. The top part is placed at (0, 0) and an object placed at (– 50 cm, 0). Find the coordinates of the image.


A converging lens has a focal length of 10 cm in air. It is made of a material with a refractive index of 1.6. If it is immersed in a liquid of refractive index 1.3, find its new focal length.


Why does a car driver use a convex mirror as a rear-view mirror?


A lens of focal length f is divided into two equal parts and then these parts are put in a combination as shown in the figure below.

  1. What is the focal length of L1?
  2. What is the focal length of the final combination?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×