English
Karnataka Board PUCPUC Science Class 11

A Neutron Initially at Rest, Decays into a Proton, an Electron and an Antineutrino. the Ejected Electron Has a Momentum of 1.4 × 10−26 Kg-m/S and the Antineutrino 6.4 × 10−27kg-m/S. - Physics

Advertisements
Advertisements

Question

A neutron initially at rest, decays into a proton, an electron, and an antineutrino. The ejected electron has a momentum of 1.4 × 10−26 kg-m/s and the antineutrino 6.4 × 10−27kg-m/s.

Find the recoil speed of the proton

(a) if the electron and the antineutrino are ejected along the same direction and

(b) if they are ejected along perpendicular directions. Mass of the proton = 1.67 × 10−27 kg. 

Sum

Solution

It is given that:
Mass of proton, mp = 1.67 × 10−27 kg
Momentum of electron = 1.4 × 10−26 kg m/s 
Momentum of antineutrino = 6.4 × 10−27 kg m/s

Let the recoil speed of the proton be Vp.
(a) When the electron and the antineutrino are ejected in the same direction, and as the total momentum is conserved the proton should be ejected in opposite direction.
Applying the law of conservation of momentum, we get:

\[m_p V_p = p_{\text{electron }} + p_{\text{antineutrino }} \]

\[1 . 67 \times {10}^{- 27} \times V_P \]

\[= 1 . 4 \times {10}^{- 26} + 6 . 4 \times {10}^{- 27} \]

\[=20.4 \times 10^{- 27} \] 

\[ \Rightarrow V_P = \left( \frac{20 . 4}{1 . 67} \right) = 12 . 2 \text{ m/s, in the opposite direction }\]

 

(b) When the electron and the antineutrino are ejected perpendicular to each other,
Total momentum of electron and antineutrino is given as,

\[p = \sqrt{p_{electron} + p_{antineutrino}} = \sqrt{(14 )^2 + (6 . 4 )^2} \times {10}^{- 27} = 15 . 4 \times {10}^{- 27} kg m/s\]

\[ \Rightarrow V_p = \frac{15 . 4 \times {10}^{- 27} \text{ kgm/s}}{1 . 67 \times {10}^{- 27} \text{ kg}}\]

\[ \Rightarrow V_p = 9 . 2 \text{m/s}\] 

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  Is there an error in this question or solution?
Chapter 9: Centre of Mass, Linear Momentum, Collision - Exercise [Page 160]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 18 | Page 160

RELATED QUESTIONS

A bob suspended from the ceiling of a car which is accelerating on a horizontal road. The bob stays at rest with respect to the car with the string making an angle θ with the vertical. The linear momentum of the bob as seen from the road is increasing with time. Is it a violation of conservation of linear momentum? If not, where is the external force changes the linear momentum?


Two bodies make an elastic head-on collision on a smooth horizontal table kept in a car. Do you expect a change in the result if the car is accelerated in a horizontal road because of the non inertial character of the frame? Does the equation "Velocity of separation = Velocity of approach" remain valid in an accelerating car? Does the equation "final momentum = initial momentum" remain valid in the accelerating car?


If the total mechanical energy of a particle is zero, is its linear momentum necessarily zero? Is it necessarily nonzero?


If the linear momentum of a particle is known, can you find its kinetic energy? If the kinetic energy of a particle is know can you find its linear momentum?


Consider the situation of the previous problem. Take "the table plus the ball" as the system. friction between the table and the ball is then an internal force. As the ball slows down, the momentum of the system decreases. Which external force is responsible for this change in the momentum?


Internal forces can change


A shell is fired from a cannon with a velocity V at an angle θ with the horizontal direction. At the highest point in its path, it explodes into two pieces of equal masses. One of the pieces retraces its path to the cannon. The speed of the other piece immediately after the explosion is


In an elastic collision
(a) the kinetic energy remains constant
(b) the linear momentum remains constant
(c) the final kinetic energy is equal to the initial kinetic energy
(d) the final linear momentum is equal to the initial linear momentum.


A ball hits a floor and rebounds after an inelastic collision. In this case
(a) the momentum of the ball just after the collision is same as that just before the collision
(b) the mechanical energy of the ball remains the same during the collision
(c) the total momentum of the ball and the earth is conserved
(d) the total energy of the ball and the earth remains the same


In a typical Indian Bugghi (a luxury cart drawn by horses), a wooden plate is fixed on the rear on which one person can sit. A bugghi of mass 200 kg is moving at a speed of 10 km/h. As it overtakes a school boy walking at a speed of 4 km/h, the boy sits on the wooden plate. If the mass of the boy is 25 kg, what will be the plate. If the mass of the boy is 25 kg, what will be the new velocity of the bugghi ?  


Consider a head-on collision between two particles of masses m1 and m2. The initial speeds of the particles are u1 and u2 in the same direction. the collision starts at t = 0 and the particles interact for a time interval ∆t. During the collision, the speed of the first particle varies as \[v(t) = u_1 + \frac{t}{∆ t}( v_1 - u_1 )\]
Find the speed of the second particle as a function of time during the collision. 


A ball of mass m moving at a speed v makes a head-on collision with an identical ball at rest. The kinetic energy of the balls after the collision is three fourths of the original. Find the coefficient of restitution.  


In a gamma decay process, the internal energy of a nucleus of mass M decreases, a gamma photon of energy E and linear momentum E/c is emitted and the nucleus recoils. Find the decrease in internal energy. 


A bullet of mass 10 g moving horizontally at a speed of 50√7 m/s strikes a block of mass 490 g kept on a frictionless track as shown in figure. The bullet remains inside the block and the system proceeds towards the semicircular track of radius 0.2 m. Where will the block strike the horizontal part after leaving the semicircular track?


The blocks shown in figure have equal masses. The surface of A is smooth but that of Bhas a friction coefficient of 0.10 with the floor. Block A is moving at a speed of 10 m/s towards B which is kept at rest. Find the distance travelled by B if (a) the collision is perfectly elastic and (b) the collision is perfectly inelastic. 


The following figure shows a rough track, a portion of which is in the form of a cylinder of radius R. With what minimum linear speed should a sphere of radius r be set rolling on the horizontal part so that it completely goes round the circle on the cylindrical part.


A thin spherical shell of radius R lying on a rough horizontal surface is hit sharply and horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×