English
Karnataka Board PUCPUC Science Class 11

A Parallel-plate Capacitor Has Plate Area 100 Cm2 and Plate Separation 1⋅0 Cm. a Glass Plate (Dielectric Constant 6⋅0) of Thickness 6⋅0 Mm and an Ebonite Plate (Dielectric Constant 4⋅0) - Physics

Advertisements
Advertisements

Question

A parallel-plate capacitor has plate area 100 cm2 and plate separation 1⋅0 cm. A glass plate (dielectric constant 6⋅0) of thickness 6⋅0 mm and an ebonite plate (dielectric constant 4⋅0) are inserted one over the other to fill the space between the plates of the capacitor. Find the new capacitance.

Sum

Solution

The given system of the capacitor will behave as two capacitors connected in series.

Let the capacitances be C1 and C2.
Now,

`C_1 = (∈_0Ak_1)/d_1` and `C_2 = (∈_0Ak_2)/d_2`

Thus, the net capacitance is given by

`C = (C_1C_2)/(C_1+C_2)`

= `((∈_0Ak_1)/d_1 xx (∈_0Ak_2)/d_2)/((∈_0Ak_1)/d_1 +(∈_0Ak_2)/d_2)`

= `(∈_0A(k_1+k_2))/(k_1d_2+k_2d_1)`

= `((8.85 xx 10^-12) xx (10^-2) xx 24) / ((6 xx 4 xx 10^-3 + 4 xx 6 xx 10^-3)) = 4.425 xx 10^-11 C`

= 44.25 pF

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Capacitors - Exercises [Page 169]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 9 Capacitors
Exercises | Q 54 | Page 169

RELATED QUESTIONS

A capacitor of capacitance ‘C’ is charged to ‘V’ volts by a battery. After some time the battery is disconnected and the distance between the plates is doubled. Now a slab of dielectric constant, 1 < k < 2, is introduced to fill the space between the plates. How will the following be affected? (a) The electric field between the plates of the capacitor Justify your answer by writing the necessary expressions.


Define capacitor reactance. Write its S.I units.


Obtain the equivalent capacitance of the network in Figure. For a 300 V supply, determine the charge and voltage across each capacitor.


(i) Find equivalent capacitance between A and B in the combination given below. Each capacitor is of 2 µF capacitance.

(ii) If a dc source of 7 V is connected across AB, how much charge is drawn from the source and what is the energy stored in the network? 


A capacitor of unknown capacitance is connected across a battery of V volts. The charge stored in it is 360 μC. When potential across the capacitor is reduced by 120 V, the charge stored in it becomes 120 μC.

Calculate:

(i) The potential V and the unknown capacitance C.

(ii) What will be the charge stored in the capacitor, if the voltage applied had increased by 120 V?


Each of the capacitors shown in figure has a capacitance of 2 µF. find the equivalent capacitance of the assembly between the points A and B. Suppose, a battery of emf 60 volts is connected between A and B. Find the potential difference appearing on the individual capacitors.


Convince yourself that parts (a), (b) and (c) figure are identical. Find the capacitance between the points A and B of the assembly.


Find the capacitance of the combination shown in figure between A and B.


Each of the plates shown in figure has surface area `(96/∈_0) xx 10^-12` Fm on one side and the separation between the consecutive plates is 4⋅0 mm. The emf of the battery connected is 10 volts. Find the magnitude of the charge supplied by the battery to each of the plates connected to it.


A capacitor of capacitance 2⋅0 µF is charged to a potential difference of 12 V. It is then connected to an uncharged capacitor of capacitance 4⋅0 µF as shown in figure . Find (a) the charge on each of the two capacitors after the connection, (b) the electrostatic energy stored in each of the two capacitors and (c) the heat produced during the charge transfer from one capacitor to the other.


Consider the situation shown in the figure. The switch S is open for a long time and then closed. (a) Find the charge flown through the battery when the switch S is closed. (b) Find the work done by the battery.(c) Find the change in energy stored in the capacitors.(d) Find the heat developed in the system.


The figure show a network of five capacitors connected to a 10V battery. Calculate the charge acquired by the 5μF capacitor.


Three capacitors C1 = 3μF, C2 = 6μF, and C3 = 10μF are connected to a 50 V battery as  shown in Figure  below:

Calculate:
(i) The equivalent capacitance of the circuit between points A and B.
(ii) The charge on C1.


You are provided with 8 μF capacitors. Show with the help of a diagram how you will arrange minimum number of them to get a resultant capacitance of 20 μF.


Obtain the expression for energy stored in the parallel plate capacitor.


A capacitor works in ______.

In a charged capacitor, the energy is stored in ______.

Two identical capacitors are connected as shown and have an initial charge of Q0. The separation between the plates of each capacitor is d0. Suddenly the left plate of the upper capacitor and right plate of the lower capacitor start moving with speed v towards the left while the other plate of each capacitor remains fixed. `("given" (Q_0V)/(2d_0) = 10 A)`. The value of current in the circuit is ______ A.

 


Read the following paragraph and answer the questions.

A capacitor is a system of two conductors separated by an insulator. The two conductors have equal and opposite charges with a potential difference between them. The capacitance of a capacitor depends on the geometrical configuration (shape, size and separation) of the system and also on the nature of the insulator separating the two conductors. They are used to store charges. Like resistors, capacitors can be arranged in series or parallel or a combination of both to obtain the desired value of capacitance.
  1. Find the equivalent capacitance between points A and B in the given diagram.
  2. A dielectric slab is inserted between the plates of the parallel plate capacitor. The electric field between the plates decreases. Explain.
  3. A capacitor A of capacitance C, having charge Q is connected across another uncharged capacitor B of capacitance 2C. Find an expression for (a) the potential difference across the combination and (b) the charge lost by capacitor A.
    OR
    Two slabs of dielectric constants 2K and K fill the space between the plates of a parallel plate capacitor of plate area A and plate separation d as shown in the figure. Find an expression for the capacitance of the system.
     

Obtain the equivalent capacitance of the network shown in the figure. For a 300 V supply, determine the charge on each capacitor.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×