English
Karnataka Board PUCPUC Science Class 11

A Pendulum Clock that Keeps Correct Time on the Earth is Taken to the Moon. It Will Run - Physics

Advertisements
Advertisements

Question

A pendulum clock that keeps correct time on the earth is taken to the moon. It will run

Options

  • at correct rate

  • 6 times faster

  • \[\sqrt{6}\] times faster

  • \[\sqrt{6}\] times slower

MCQ

Solution

(d)\[\sqrt{6}\] times slower

The acceleration due to gravity at moon is g/6.
Time period of pendulum is given by,

\[T = 2\pi\sqrt{\frac{l}{g}}\]

Therefore, on moon, time period will be :

Tmoon = \[2\pi\sqrt{\frac{l}{g_{moon}}} = 2\pi\sqrt{\frac{l}{( \frac{g}{6})}} = \sqrt{6}(2\pi\sqrt{\frac{l}{g}}) = \sqrt{6}T\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - MCQ [Page 251]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
MCQ | Q 18 | Page 251

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The average displacement over a period of S.H.M. is ______.

(A = amplitude of S.H.M.)


Define phase of S.H.M.


Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?

(a) a = 0.7x

(b) a = –200x2

(c) a = –10x

(d) a = 100x3


State the differential equation of linear simple harmonic motion.


Can a pendulum clock be used in an earth-satellite?


The average energy in one time period in simple harmonic motion is


In a simple harmonic motion


Which of the following will change the time period as they are taken to moon?
(a) A simple pendulum
(b) A physical pendulum
(c) A torsional pendulum
(d) A spring-mass system


A pendulum having time period equal to two seconds is called a seconds pendulum. Those used in pendulum clocks are of this type. Find the length of a second pendulum at a place where = π2 m/s2.


A simple pendulum is constructed by hanging a heavy ball by a 5.0 m long string. It undergoes small oscillations. (a) How many oscillations does it make per second? (b) What will be the frequency if the system is taken on the moon where acceleration due to gravitation of the moon is 1.67 m/s2?


A small block oscillates back and forth on a smooth concave surface of radius R in Figure. Find the time period of small oscillation.


A spherical ball of mass m and radius r rolls without slipping on a rough concave surface of large radius R. It makes small oscillations about the lowest point. Find the time period.


Assume that a tunnel is dug across the earth (radius = R) passing through its centre. Find the time a particle takes to cover the length of the tunnel if (a) it is projected into the tunnel with a speed of \[\sqrt{gR}\] (b) it is released from a height R above the tunnel (c) it is thrown vertically upward along the length of tunnel with a speed of \[\sqrt{gR}\]


A closed circular wire hung on a nail in a wall undergoes small oscillations of amplitude 20 and time period 2 s. Find (a) the radius of the circular wire, (b) the speed of the particle farthest away from the point of suspension as it goes through its mean position, (c) the acceleration of this particle as it goes through its mean position and (d) the acceleration of this particle when it is at an extreme position. Take g = π2 m/s2.


A particle is subjected to two simple harmonic motions given by x1 = 2.0 sin (100π t) and x2 = 2.0 sin (120 π t + π/3), where x is in centimeter and t in second. Find the displacement of the particle at (a) = 0.0125, (b) t = 0.025.


Define the frequency of simple harmonic motion.


Write short notes on two springs connected in series.


Consider two simple harmonic motion along the x and y-axis having the same frequencies but different amplitudes as x = A sin (ωt + φ) (along x-axis) and y = B sin ωt (along y-axis). Then show that

`"x"^2/"A"^2 + "y"^2/"B"^2 - (2"xy")/"AB" cos φ = sin^2 φ`

and also discuss the special cases when

  1. φ = 0
  2. φ = π
  3. φ = `π/2`
  4. φ = `π/2` and A = B
  5. φ = `π/4`

Note: when a particle is subjected to two simple harmonic motions at right angle to each other the particle may move along different paths. Such paths are called Lissajous figures.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×