English

An aircraft is flying at a height of 3400 m above the ground. If the angle subtended at a ground observation point by the aircraft positions 10.0 s a part is 30°, what is the speed of the aircraft? - Physics

Advertisements
Advertisements

Question

An aircraft is flying at a height of 3400 m above the ground. If the angle subtended at a ground observation point by the aircraft positions 10.0 s a part is 30°, what is the speed of the aircraft?

Numerical

Solution

The positions of the observer and the aircraft are shown in the given figure.

Height of the aircraft from ground, OR = 3400 m

Angle subtended between the positions, ∠POQ = 30°

Time = 10 s

In ΔPRO:

`tan 15^@  =(PR)/(OR)`

`"PR" = "OR"  tan 15^@`

`=3400 xx tan 15^@`

`= 3400 xx 0.2679 = 910.86`

ΔPRO is similar to ΔRQO.

∴PR = RQ

PQ = PR + RQ

= 2PR

= 2 × 910.86 = 1821.72 m

∴ Speed of aircraft = `1821.72/10 = 182.2 "m/s"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Motion in a Plane - Exercises [Page 87]

APPEARS IN

NCERT Physics [English] Class 11
Chapter 4 Motion in a Plane
Exercises | Q 25 | Page 87

RELATED QUESTIONS

Show that the projection angle `theta_o` for a projectile launched from the origin is given by

`theta_o =tan^(-1) ((4h_m)/R)`

Where the symbols have their usual meaning


A body of mass m is projected horizontally with a velocity v from the top of a tower of height h and it reaches the ground at a distance x from the foot of the tower. If the second body of mass of 4 m is projected horizontally from the top of a tower of the height of 4 h, it reaches the ground at a distance of 4x from the foot of the tower. The horizontal velocity of the second body is:


A car starts from rest and accelerates at 5 m/s2. At t = 4 s, a ball is dropped out of a window by a person sitting in the car. What is the velocity and acceleration of the ball at t = 6 s? (Take g = 10 m/s2)


A particle moving in a circle of radius R with a uniform speed takes a time T to complete one revolution.

If this particle were projected with the same speed at an angle ‘θ’ to the horizontal, the maximum height attained by it equals 4R. The angle of projection, θ, is then given by ______.


A particle is projected in air at some angle to the horizontal, moves along parabola as shown in figure, where x and y indicate horizontal and vertical directions, respectively. Show in the diagram, direction of velocity and acceleration at points A, B and C.


A football is kicked into the air vertically upwards. What is its acceleration?


A boy throws a ball in air at 60° to the horizontal along a road with a speed of 10 m/s (36 km/h). Another boy sitting in a passing by car observes the ball. Sketch the motion of the ball as observed by the boy in the car, if car has a speed of (18 km/h). Give explanation to support your diagram. 


A gun can fire shells with maximum speed v0 and the maximum horizontal range that can be achieved is R = `v_0^2/g`. If a target farther away by distance ∆x (beyond R) has to be hit with the same gun (Figure), show that it could be achieved by raising the gun to a height at least `h = Δx[ 1 + (Δx)/R]`


A cricket fielder can throw the cricket ball with a speed vo. If he throws the ball while running with speed u at an angle θ to the horizontal, find 

  1. the effective angle to the horizontal at which the ball is projected in air as seen by a spectator.
  2. what will be time of flight?
  3. what is the distance (horizontal range) from the point of projection at which the ball will land?
  4. find θ at which he should throw the ball that would maximise the horizontal range as found in (iii).
  5. how does θ for maximum range change if u > vo, u = vo, u < vo?
  6. how does θ in (v) compare with that for u = 0 (i.e.45)?

The minimum speed in m/s with which a projectile must be thrown from origin at ground so that it is able to pass through a point P (30 m, 40 m) is ______. (g = 10 m/s2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×