English

An isosceles triangle ABC has AC = BC. CD bisects AB at D and ∠CAB = 55°. Find: (i) ∠DCB (ii) ∠CBD - Mathematics

Advertisements
Advertisements

Question

An isosceles triangle ABC has AC = BC. CD bisects AB at D and ∠CAB = 55°.

Find: 

  1. ∠DCB 
  2. ∠CBD
Sum

Solution


In ΔABC,

AC = BC        ...[Given]

∴ ∠CAB = ∠CBD       ...[angles opp. to equal sides are equal]

⇒ ∠CBD = 55°

In ΔABC,

∠CBA + ∠CAB + ∠ACB = 180°

but, ∠CAB = ∠CBA = 55°

⇒ 55° + 55° + ∠ACB = 180°

⇒ ∠ACB = 180° − 110°

⇒ ∠ACB = 70°

Now,

In ΔACD and ΔBCD,

AC = BC      ...[Given]

CD = CD      ...[Common]

AD = BD     ...[Given: CD bisects AB]

∴ ΔACD ≅ ΔBCD

⇒ ∠DCA = ∠DCB

⇒ ∠DCB = `(∠"ACB")/2`

= `(70°)/2`

⇒ ∠DCB = 35°

shaalaa.com
Converse of Isosceles Triangle Theorem
  Is there an error in this question or solution?
Chapter 10: Isosceles Triangles - Exercise 10 (A) [Page 131]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 10 Isosceles Triangles
Exercise 10 (A) | Q 7 | Page 131
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×