English

Derive an expression for energy stored in a capacitor. - Physics

Advertisements
Advertisements

Questions

Derive an expression for energy stored in a capacitor.

Derive an expression for energy stored in a charged capacitor.

Derivation

Solution

Consider a capacitor of capacitance C being charged by a DC source of V volt as shown in figure.

Capacitor charged by a DC source.

During the process of charging, let q' be the charge on the capacitor and V be the potential difference between the plates. Hence

`"C" =("q""'")/"V"`

A small amount of work is done if a small charge dq is further transferred between the plates.

∴ `"dW" ="Vdq"=("q""'")/"Cdq"`

Total work done in transferring the charge 

`"W"=int"dw"=int_0^"Q" ("q'")/"C" "dq" = 1/"C"int_0^"Q" "q'" "dq"`

`=1/"C"[(("q""'")^2)/2]_0^"Q" = 1/2 "Q"^2/"C"`

This work done is stored as electrical potential energy U of the capacitor. This work done can be expressed in different forms as follows:

∴ `"U" = 1/2 "Q"^2/"C"=1/2"CV"^2=1/2"QV"      (because "Q" = "CV")`

shaalaa.com

Notes

Students should refer to the answer according to their questions.

  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

Explain what would happen if the capacitor given in previous question a 3 mm thick mica sheet (of dielectric constant = 6) were inserted between the plates,

  1. While the voltage supply remained connected.
  2. After the supply was disconnected.

A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?


Find the charge on the capacitor as shown in the circuit.


Find the ratio of energy stored in the two configurations if they are both connected to the same source.


A capacitor of capacitance 500 μF is connected to a battery through a 10 kΩ resistor. The charge stored in the capacitor in the first 5 s is larger than the charge stored in the next.

(a) 5 s

(b) 50 s

(c) 500 s

(d) 500 s


A 20 μF capacitor is joined to a battery of emf 6.0 V through a resistance of 100 Ω. Find the charge on the capacitor 2.0 ms after the connections are made.


The plates of a capacitor of capacitance 10 μF, charged to 60 μC, are joined together by a wire of resistance 10 Ω at t = 0. Find the charge on the capacitor in the circuit at (a) t = 0 (b) t = 30 μs (c) t = 120 μs and (d) t = 1.0 ms.


A 100 μF capacitor is joined to a 24 V battery through a 1.0 MΩ resistor. Plot qualitative graphs (a) between current and time for the first 10 minutes and (b) between charge and time for the same period.


How many time constants will elapse before the charge on a capacitors falls to 0.1% of its maximum value in a discharging RC circuit?


How many time constants will elapse before the energy stored in the capacitor reaches half of its equilibrium value in a charging RC circuit?


A capacitor of capacitance 12.0 μF is connected to a battery of emf 6.00 V and internal resistance 1.00 Ω through resistanceless leads. 12.0 μs after the connections are made, what will be (a) the current in the circuit (b) the power delivered by the battery (c) the power dissipated in heat and (d) the rate at which the energy stored in the capacitor is increasing?


A capacitance C charged to a potential difference V is discharged by connecting its plates through a resistance R. Find the heat dissipated in one time constant after the connections are made. Do this by calculating ∫ i2R dt and also by finding the decrease in the energy stored in the capacitor.


By evaluating ∫i2Rdt, show that when a capacitor is charged by connecting it to a battery through a resistor, the energy dissipated as heat equals the energy stored in the capacitor.


Find the charge on each of the capacitors 0.20 ms after the switch S is closed in the figure.


A large conducting plane has a surface charge density `1.0 xx 10^-4  "Cm"^-2` . Find the electrostatic energy stored in a cubical volume of edge 1⋅0 cm in front of the plane.


Answer the following question.
Obtain the expression for the energy stored in a capacitor connected across a dc battery. Hence define energy density of the capacitor


A parallel plate condenser is immersed in an oil of dielectric constant 2. The field between the plates is ______.


A capacitor is charged by a battery and energy stored is 'U'. Now the battery is removed and the distance between plates is increased to four times. The energy stored becomes ______.


An air-filled parallel plate capacitor has a uniform electric field `overset(->)("E")` in the space between the plates. If the distance between the plates is 'd' and the area of each plate is 'A', the energy stored in the capacitor is ______ 
(∈0 = permittivity of free space)


A 2µF capacitor is charge to 100 volt and then its plate are connected by a conducting wire. The heat produced is:-


What fraction of the energy drawn from the charging battery is stored in a capacitor?


A parallel plate capacitor has a uniform electric field ‘`vec "E"`’ in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______

0 = permittivity of free space)


A parallel plate capacitor has a uniform electric field `overset(->)("E")` in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______

0 = permittivity of free space)


Do free electrons travel to region of higher potential or lower potential?


A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of total electrostatic energy stored in A and B finally and that stored in A initially.


In a capacitor of capacitance 20 µF, the distance between the plates is 2 mm. If a dielectric slab of width 1 mm and dielectric constant 2 is inserted between the plates, what is the new capacitance?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×