English

Draw an ∠ABC = 60°, having AB = 4.6 cm and BC = 5 cm. Find a point P equidistant from AB and BC; and also equidistant from A and B. - Mathematics

Advertisements
Advertisements

Question

Draw an ∠ABC = 60°, having AB = 4.6 cm and BC = 5 cm. Find a point P equidistant from AB and BC; and also equidistant from A and B. 

Sum

Solution


Steps of construction:

  1. Draw a line segment BC = 5 cm
  2. At B, draw a ray BX making an angle of 60° and cut off BA = 4.6 cm.
  3. Draw the angle bisector of ∠ABC.
  4. Draw the perpendicular bisector of AB which intersects the angle bisector at P.
    P is the required point which is equidistant from AB and BC, as well as from A and B. 
shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Loci (Locus and Its Constructions) - Exercise 16 (A) [Page 238]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 16 Loci (Locus and Its Constructions)
Exercise 16 (A) | Q 15 | Page 238

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Use ruler and compasses only for this question.

  1. Construct ΔABC, where AB = 3.5 cm, BC = 6 cm and ∠ABC = 60°.
  2. Construct the locus of points inside the triangle which are equidistant from BA and BC.
  3. Construct the locus of points inside the triangle which are equidistant from B and C.
  4. Mark the point P which is equidistant from AB, BC and also equidistant from B and C. Measure and record the length of PB.

The given figure shows a triangle ABC in which AD bisects angle BAC. EG is perpendicular bisector of side AB which intersects AD at point F.

Prove that: 


F is equidistant from AB and AC.


In the figure given below, find a point P on CD equidistant from points A and B. 


In the given triangle ABC, find a point P equidistant from AB and AC; and also equidistant from B and C. 

 


Construct a triangle ABC, with AB = 7 cm, BC = 8 cm and ∠ABC = 60°. Locate by construction the point P such that:

  1. P is equidistant from B and C.
  2. P is equidistant from AB and BC.
    Measure and record the length of PB.

A straight line AB is 8 cm long. Draw and describe the locus of a point which is:

  1. always 4 cm from the line AB.
  2. equidistant from A and B.
    Mark the two points X and Y, which are 4 cm from AB and equidistant from A and B. Describe the figure AXBY.

In a quadrilateral PQRS, if the bisectors of ∠ SPQ and ∠ PQR meet at O, prove that O is equidistant from PS and QR. 


In Fig. ABCD is a quadrilateral in which AB = BC. E is the point of intersection of the right bisectors of AD and CD. Prove that BE bisects ∠ABC.


Given: ∠BAC, a line intersects the arms of ∠BAC in P and Q. How will you locate a point on line segment PQ, which is equidistant from AB and AC? Does such a point always exist?


Use ruler and compasses for the following question taking a scale of 10 m = 1 cm. A park in a city is bounded by straight fences AB, BC, CD and DA. Given that AB = 50 m, BC = 63 m, ∠ABC = 75°. D is a point equidistant from the fences AB and BC. If ∠BAD = 90°, construct the outline of the park ABCD. Also locate a point P on the line BD for the flag post which is equidistant from the corners of the park A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×