English

Find the Diagonal of a Rectangle Whose Length is 16 Cm and Area is 192 Sq.Cm. - Geometry Mathematics 2

Advertisements
Advertisements

Question

Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq.cm ?

Sum

Solution

It is given that, area of rectangle is 192 sq.cm.

\[\text{Area} = \text{Length} \times \text{Breadth}\]
\[ \Rightarrow 192 = 16 \times \text{BC}\]
\[ \Rightarrow \text{BC} = \frac{192}{16}\]
\[ \Rightarrow \text{BC} = 12 \text{cm} . . . \left( 1 \right)\]

According to Pythagoras theorem,

In ∆ABC

\[{\text{AB}}^2 + {\text{BC}}^2 = {\text{AC}}^2 \]
\[ \Rightarrow \left( 16 \right)^2 + \left( 12 \right)^2 = {\text{AC}}^2 \]
\[ \Rightarrow 256 + 144 = {\text{AC}}^2 \]
\[ \Rightarrow {\text{AC}}^2 = 400\]
\[ \Rightarrow \text{AC} = 20 \text{cm}\]

Hence, the length of a diagonal of the rectangle is 20 cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Pythagoras Theorem - Problem Set 2 [Page 44]

APPEARS IN

Balbharati Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
Chapter 2 Pythagoras Theorem
Problem Set 2 | Q 4 | Page 44

RELATED QUESTIONS

If the sides of a triangle are 3 cm, 4 cm, and 6 cm long, determine whether the triangle is a right-angled triangle.


The sides of triangle is given below. Determine it is right triangle or not.

a = 9 cm, b = l6 cm and c = 18 cm


The sides of triangle is given below. Determine it is right triangle or not.

a = 1.6 cm, b = 3.8 cm and c = 4 cm


ABCD is a square. F is the mid-point of AB. BE is one third of BC. If the area of ΔFBE = 108 cm2, find the length of AC.


In an isosceles triangle ABC, if AB = AC = 13 cm and the altitude from A on BC is 5 cm, find BC.


In an acute-angled triangle, express a median in terms of its sides.


Calculate the height of an equilateral triangle each of whose sides measures 12 cm.


In right-angled triangle ABC in which ∠C = 90°, if D is the mid-point of BC, prove that AB2 = 4AD2 − 3AC2.


In ∆ABC, ∠A is obtuse, PB ⊥ AC and QC ⊥ AB. Prove that:

(i) AB ✕ AQ = AC ✕ AP

(ii) BC2 = (AC ✕ CP + AB ✕ BQ)


In a quadrilateral ABCD, ∠B = 90°, AD2 = AB2 + BC2 + CD2, prove that ∠ACD = 90°.


In an equilateral ΔABC, AD ⊥ BC, prove that AD2 = 3BD2.


An aeroplane leaves an airport and flies due north at a speed of 1000km/hr. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km/hr. How far apart will be the two planes after 1 hours?


Find the length of the altitude of an equilateral triangle of side 2a cm. 


ΔABC~ΔDEF such that ar(ΔABC) = 64 cm2 and ar(ΔDEF) = `169cm^2`. If BC = 4cm, find EF.  

 


In an equilateral triangle with side a, prove that area = `sqrt3/4` 𝑎2 

 


Find the length of each side of a rhombus whose diagonals are 24cm and 10cm long. 


A man goes 12m due south and then 35m due west. How far is he from the starting point. 


The co-ordinates of the points A, B and C are (6, 3), (−3, 5) and (4, −2) respectively. P(xy) is any point in the plane. Show that \[\frac{ar\left( ∆ PBC \right)}{ar\left( ∆ ABC \right)} = \left| \frac{x + y - 2}{7} \right|\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×