Advertisements
Advertisements
Question
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
Solution
The given equation is
Here, the denominator of
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing the given equation with
∴
Therfore,
Coordinates of foci are (0, ± c) i.e.
Coordinates of vertices are (0, ±a) i.e. (0, ± 20).
Length of major axis = 2a = 2 x 20 = 40
Length of minor axis= 2b = 2 x 10 = 20
Eccentricity (e) =
Length of latus rectum =
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
36x2 + 4y2 = 144
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
16x2 + y2 = 16
An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
4 (y − 1)2 = − 7 (x − 3)
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
x2 + y = 6x − 14
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line-segment makes an angle θ to the x-axis.
Write the axis of symmetry of the parabola y2 = x.
Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0.
Write the length of the chord of the parabola y2 = 4ax which passes through the vertex and is inclined to the axis at
In the parabola y2 = 4ax, the length of the chord passing through the vertex and inclined to the axis at π/4 is
The directrix of the parabola x2 − 4x − 8y + 12 = 0 is
The vertex of the parabola (y − 2)2 = 16 (x − 1) is
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
x2 + 2y2 − 2x + 12y + 10 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
x2 + 4y2 − 4x + 24y + 31 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
4x2 + y2 − 8x + 2y + 1 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
3x2 + 4y2 − 12x − 8y + 4 = 0
Find the equation of the set of all points whose distances from (0, 4) are
If the lengths of semi-major and semi-minor axes of an ellipse are 2 and
Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0.
PSQ is a focal chord of the ellipse 4x2 + 9y2 = 36 such that SP = 4. If S' is the another focus, write the value of S'Q.
If S and S' are two foci of the ellipse
If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse.
The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.
Find the equation of a circle which touches both the axes and the line 3x – 4y + 8 = 0 and lies in the third quadrant.
Find the distance between the directrices of the ellipse
The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.