English

If S and S' Are Two Foci of the Ellipse X 2 a 2 + Y 2 B 2 = 1 and B is an End of the Minor Axis Such that ∆Bss' is Equilateral, Then Write the Eccentricity of the Ellipse. - Mathematics

Advertisements
Advertisements

Question

If S and S' are two foci of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and B is an end of the minor axis such that ∆BSS' is equilateral, then write the eccentricity of the ellipse.

Solution

\[\text{ We know that the focal distance of a point B }(0, b) \text{ is } a \pm e . 0 = a\]
\[\text{ i . e } . SB = SB' = a\]
`therefore SB + S B^' = 2a `
 `"Since" ∆ {BSS}^' \"is equilateral, we have":`
`SB = S S^' = S^' B = 2ae`
\[ \Rightarrow 2ae + 2ae = 2a\]
\[ \Rightarrow 4ae = 2a\]
\[ \Rightarrow e = \frac{2}{4}\]
\[ \Rightarrow e = \frac{1}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 26: Ellipse - Exercise 26.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 26 Ellipse
Exercise 26.2 | Q 7 | Page 27

RELATED QUESTIONS

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/16 + y^2/9 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/25 + y^2/100 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/49 + y^2/36 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/100 + y^2/400 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

36x2 + 4y2 = 144


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

16x2 + y2 = 16


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

4x2 + 9y2 = 36


An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

4x2 + y = 0 

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 − 4y + 4x = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 + 4x + 4y − 3 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8y

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 4 (y − 1)2 = − 7 (x − 3) 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

x2 + y = 6x − 14


Write the axis of symmetry of the parabola y2 = x


Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0. 


Write the length of the chord of the parabola y2 = 4ax which passes through the vertex and is inclined to the axis at \[\frac{\pi}{4}\] 


If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix. 


In the parabola y2 = 4ax, the length of the chord passing through the vertex and inclined to the axis at π/4 is


The equation of the parabola with focus (0, 0) and directrix x + y = 4 is 


The vertex of the parabola (y − 2)2 = 16 (x − 1) is 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

 x2 + 4y2 − 4x + 24y + 31 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + y2 − 8x + 2y + 1 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 


If the lengths of semi-major and semi-minor axes of an ellipse are 2 and \[\sqrt{3}\] and their corresponding equations are y − 5 = 0 and x + 3 = 0, then write the equation of the ellipse. 


Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0. 


If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse. 


Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.


The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×