English

For the travelling harmonic wave y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35) Where x and y are in cm and t in s. Calculate the phase difference between - Physics

Advertisements
Advertisements

Question

For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of `λ/2`.

Numerical

Solution 1

Equation for a travelling harmonic wave is given as:

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

= 2.0 cos (20πt – 0.016πx + 0.70 π)

Where,

Propagation constant, k = 0.0160 π

Amplitude, a = 2 cm

Angular frequency, ω= 20 π rad/s

Phase difference is given by the relation:

`phi = "k"x = (2pi)/lambda`

For  `x = lambda/2`

`phi = (2phi)/lambda xx lambda/2`

`= pi " rad"`

shaalaa.com

Solution 2

The given equation can be drawn be rewritten as under

y(x, t) `= 2.0 cos [2pi (10"t" - 0.0080x) + 2pi xx 0.35]`

or y(x, t) `= 2.0 cos [2pi xx 0.0080((10"t")/0.0080 - x) + 0.7pi]`

Comparing this equation with the standard equation of a travelling harmonic wave.

`(2pi)/lambda = 2pi  xx  0.0080`  or `lambda = 1/0.0080 " cm" = 125` cm

The phase difference between oscillatory motion of two points seperated by a distance `trianglex` is given by

`trianglephi  = (2pi)/lambda trianglex`

When `trianglex  = lambda/2 = 125/2` cm , then

`triangle phi  = (2phi)/125 xx 125/2`

`= pi " rad"`

shaalaa.com
The Speed of a Travelling Wave
  Is there an error in this question or solution?
Chapter 15: Waves - Exercises [Page 387]

APPEARS IN

NCERT Physics [English] Class 11
Chapter 15 Waves
Exercises | Q 10.3 | Page 387

RELATED QUESTIONS

Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience both transverse (S) and longitudinal (P) sound waves. Typically the speed of wave is about 4.0 km s–1, and that of wave is 8.0 km s–1. A seismograph records and waves from an earthquake. The first wave arrives 4 min before the first wave. Assuming the waves travel in straight line, at what distance does the earthquake occur?


A sine wave is travelling in a medium. A particular particle has zero displacement at a certain instant. The particle closest to it having zero displacement is at a distance


Choose the correct option:

Which of the following equations represents a wave travelling along Y-axis? 


A wave pulse is travelling on a string with a speed \[\nu\] towards the positive X-axis. The shape of the string at t = 0 is given by g(x) = Asin(x/a), where A and a are constants. (a) What are the dimensions of A and a ? (b) Write the equation of the wave for a general time t, if the wave speed is \[\nu\].


A string of length 40 cm and weighing 10 g is attached to a spring at one end and to a fixed wall at the other end. The spring has a spring constant of 160 N m−1 and is stretched by 1⋅0 cm. If a wave pulse is produced on the string near the wall, how much time will it take to reach the spring?


Two long strings A and B, each having linear mass density
\[1 \cdot 2 \times  {10}^{- 2}   kg   m^{- 1}\] , are stretched by different tensions 4⋅8 N and 7⋅5 N respectively and are kept parallel to each other with their left ends at x = 0. Wave pulses are produced on the strings at the left ends at t = 0 on string A and at t = 20 ms on string B. When and where will the pulse on B overtake that on A?


Speed of sound wave in air ______.


A string of mass 2.5 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, the disturbance will reach the other end in ______.


At what temperatures (in °C) will the speed of sound in air be 3 times its value at O°C?


Two perfectly identical wires kept under tension are in unison. When the tension in the wire is increased by 1% then on sounding them together 3 beats are heard in 2 seconds. What is the frequency of each wire?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×