English
Karnataka Board PUCPUC Science Class 11

A wave pulse is travelling on a string with a speed ν towards the positive X-axis. The shape of the string at t = 0 is given by g(x) = Asin(x/a), where A and a are constants. - Physics

Advertisements
Advertisements

Question

A wave pulse is travelling on a string with a speed \[\nu\] towards the positive X-axis. The shape of the string at t = 0 is given by g(x) = Asin(x/a), where A and a are constants. (a) What are the dimensions of A and a ? (b) Write the equation of the wave for a general time t, if the wave speed is \[\nu\].

Sum

Solution

The shape of the string at t = 0 is given by g(x) = A sin(x/a), where A and a are constants.
Dimensions of A and a are governed by the dimensional homogeneity of the equation g(x) = A sin(x/a).
Now,

\[(a)    \left[ M^0 L^1 T^0 \right] = \left[ A \right]\] 

\[ \Rightarrow \left[ A \right] = \left[ L \right]\] 

\[And,   \] 

\[\left[ a \right] = \left[ M^0 L^1 T^0 \right]\] 

\[ \Rightarrow \left[ a \right] = \left[ L \right]\] 

\[\] 

(b)  Wave  speed =\[ \nu\] 

\[ \therefore  \text{ Time  period, }  T = \frac{a}{\nu}\] 

Here,

a = Wave  length = \[\lambda  \] 

 The  general  equation  of  wave  is  represented  by

\[y = A\sin\left\{ \frac{x}{a} - \frac{t}{\frac{a}{v}} \right\}\] 

\[       = A\sin\left\{ \frac{x - \nu t}{a} \right\}\]

shaalaa.com
The Speed of a Travelling Wave
  Is there an error in this question or solution?
Chapter 15: Wave Motion and Waves on a String - Exercise [Page 324]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 15 Wave Motion and Waves on a String
Exercise | Q 6 | Page 324

RELATED QUESTIONS

A stone dropped from the top of a tower of height 300 m high splashes into the water of a pond near the base of the tower. When is the splash heard at the top given that the speed of sound in air is 340 m s–1? (g= 9.8 m s–2)


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air increases with humidity.


You have learnt that a travelling wave in one dimension is represented by a function y= f (x, t)where x and t must appear in the combination x – v t or x + v t, i.e. y = f (x ± v t). Is the converse true? Examine if the following functions for y can possibly represent a travelling wave:

(a) `(x – vt )^2`

(b) `log [(x + vt)/x_0]`

(c) `1/(x + vt)`


A metre-long tube open at one end, with a movable piston at the other end, shows resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the temperature of the experiment. The edge effects may be neglected.


Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience both transverse (S) and longitudinal (P) sound waves. Typically the speed of wave is about 4.0 km s–1, and that of wave is 8.0 km s–1. A seismograph records and waves from an earthquake. The first wave arrives 4 min before the first wave. Assuming the waves travel in straight line, at what distance does the earthquake occur?


Show that for a wave travelling on a string 
\[\frac{y_{max}}{\nu_{max}} = \frac{\nu_{max}}{\alpha_{max}},\]

where the symbols have usual meanings. Can we use componendo and dividendo taught in algebra to write
\[\frac{y_{max} + \nu_{max}}{\nu_{max} - \nu_{max}} = \frac{\nu_{max} + \alpha_{max}}{\nu_{max} - \alpha_{max}}?\]


Two strings A and B, made of same material, are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed `v_A` and on B with speed `v_B`. The ratio `v_A/v_B` is ______.


Two wires A and B, having identical geometrical construction, are stretched from their natural length by small but equal amount. The Young modules of the wires are YA and YB whereas the densities are \[\rho_A \text{ and }   \rho_B\]. It is given that YA > YB and \[\rho_A  >  \rho_B\]. A transverse signal started at one end takes a time t1 to reach the other end for A and t2 for B.


The equation of a wave travelling on a string stretched along the X-axis is given by
\[y = A  e {}^-  \left( \frac{x}{a} + \frac{t}{T} \right)^2  .\]
(a) Write the dimensions of A, a and T. (b) Find the wave speed. (c) In which direction is the wave travelling? (d) Where is the maximum of the pulse located at t = T? At t = 2 T?


A sonometer wire of length l vibrates in fundamental mode when excited by a tuning fork of frequency 416. Hz. If the length is doubled keeping other things same, the string will ______.


A pulse travelling on a string is represented by the function \[y = \frac{a^2}{\left( x - \nu t \right)^2 + a^2},\] where a = 5 mm and ν = 20 cm-1. Sketch the shape of the string at t = 0, 1 s and 2 s. Take x = 0 in the middle of the string.


A steel wire fixed at both ends has a fundamental frequency of 200 Hz. A person can hear sound of maximum frequency 14 kHz. What is the highest harmonic that can be played on this string which is audible to the person?


Following figure shows a string stretched by a block going over a pulley. The string vibrates in its tenth harmonic in unison with a particular tuning for. When a beaker containing water is brought under the block so that the block is completely dipped into the beaker, the string vibrates in its eleventh harmonic. Find the density of the material of the block.


The string of a guitar is 80 cm long and has a fundamental frequency of 112 Hz. If a guitarist wishes to produce a frequency of 160 Hz, where should the person press the string?


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air is independent of pressure.


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air increases with temperature.


A steel wire has a length of 12 m and a mass of 2.10 kg. What will be the speed of a transverse wave on this wire when a tension of 2.06 × 104N is applied?


If c is r.m.s. speed of molecules in a gas and v is the speed of sound waves in the gas, show that c/v is constant and independent of temperature for all diatomic gases.


An engine is approaching a cliff at a constant speed. When it is at a distance of 0.9 km from cliff it sounds a whistle. The echo of the sound is heard by the driver after 5 seconds. Velocity of sound in air is equal to 330 ms-1. The speed of the engine is ______ km/h.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×