Advertisements
Advertisements
Question
In a nuclear reactor, what is the function of:
(i) The moderator
(ii) The control rods
(iii) The coolant
Solution
(i) The function of the moderator is to slow down the neutrons to thermal energies due to collision between the nuclei and neutrons produced in fission.
(ii) The function of control rods are used to control the rate at which fission takes place, control rods are of cadmium which can absorb neutrons and thus control the fission reaction.
(iii) Coolant is used to remove the heat which is released inside the reactor.
APPEARS IN
RELATED QUESTIONS
Is it easier to take out a nucleon (a) from carbon or from iron (b) from iron or from lead?
In which of the following decays the atomic number decreases?
(a) α-decay
(b) β+-decay
(c) β−-decay
(d) γ-decay
Which property of nuclear force explains the constancy of binding energy per nucleon `((BE)/A)` for nuclei in the range 20< A < 170 ?
What is the minimum energy which a gamma-ray photon must possess in order to produce electron-positron pair?
Calculate the binding energy of an alpha particle given its mass to be 4.00151 u.
In a periodic table the average atomic mass of magnesium is given as 24.312 u. The average value is based on their relative natural abundance on earth. The three isotopes and their masses are\[\ce{_12^24Mg}\](23.98504 u), \[\ce{_12^25Mg}\] (24.98584 u), and \[\ce{_12^26Mg}\] (25.98259 u). The natural abundance of \[\ce{_12^24Mg}\] is 78.99% by mass. Calculate the abundances of other two isotopes.
Mx and My denote the atomic masses of the parent and the daughter nuclei respectively in a radioactive decay. The Q-value for a β– decay is Q1 and that for a β+ decay is Q2. If m e denotes the mass of an electron, then which of the following statements is correct?
Calculate the binding energy of an alpha particle in MeV. Given
mass of a proton = 1.007825 u
mass of a neutron = 1.008665 u
mass of He nucleus = 4.002800 u
1u = 931 MeV/c2
What is meant by “binding energy per nucleon” of a nucleus?
Find the binding energy per nucleon of 235U based on the information given below.
Mass(u) | |
mass of neutral `""_92^235"U"` | 235.0439 |
mass of a proton | 1.0073 |
mass of a neutron | 1.0087 |