English

In a Quadrilateral Pqrs, the Diagonals Pr and Qs Intersect Each Other at the Point T. If Pt:Tr = Qt :Ts = 1:2, Show that Tp:Tq = Tr:Ts - Mathematics

Advertisements
Advertisements

Question

In a quadrilateral PQRS, the diagonals PR and QS intersect each other at the point T. If PT:TR = QT :TS = 1:2, show that TP:TQ = TR:TS

Sum

Solution

Consider ΔPTQ and ΔRTS,

`"PT"/"TR" = "QT"/"TS" = (1)/(2)`  ...(Given)

∠PTQ = ∠RTS     ...(Vertically Opposite angles)
⇒ ΔPTQ ∼ ΔRTS  ...(SAS criterion for Similarity)

⇒ `"TP"/"TQ" = "TR"/"TS"`. ...(Rearranging the terms)

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Similarity - Exercise 16.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 16 Similarity
Exercise 16.1 | Q 21.2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×