English

In Fig. Ab = Ac, Bd and Ce Are the Bisectors of ∠Abc and ∠Acb Respectively Such that Bd and Ce Intersect Each Other at O. Ao Produced Meets Bc at F. Prove that Af is the Right Bisector of Bc. - Mathematics

Advertisements
Advertisements

Question

In Fig. AB = AC, BD and CE are the bisectors of ∠ABC and ∠ACB respectively such that BD and CE intersect each other at O. AO produced meets BC at F. Prove that AF is the right bisector of BC.

Sum

Solution

Given: A ΔABC in which AB = AC.
BD, the bisector of ∠ABC meets CE, the bisector of ∠ACB at O. AO produced meets BC at F.
To prove: AF is the right bisector of BC.
Proof: We have, AB = AC
⇒ A lies on the right bisector of BC    ...(i)
and ∠ABC = ∠ACB
Now, ∠ABC = ∠ACB
⇒ `(1)/(2)`∠ABC = `(1)/(2)`∠ACB
⇒ ∠OBC = ∠OCB
[∵ BD and CE are bisector of ∠B and∠C respectively]
⇒ OB = OC
[∵ Sides opposite to equal angles are equal]
⇒ O lies on the right bisector of BC    ...(iii)
From (i) and (ii), we obtain
⇒ A and O both lie on the right bisector of BC.
⇒ AO is the right bisector of BC
Hence, AF is the right bisector of BC.
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Loci (Locus and its Constructions) - Figure Based Questions

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 14 Loci (Locus and its Constructions)
Figure Based Questions | Q 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Construct a right angled triangle PQR, in which ∠Q = 90°, hypotenuse PR = 8 cm and QR = 4.5 cm. Draw bisector of angle PQR and let it meets PR at point T. Prove that T is equidistant from PQ and QR. 


Use ruler and compasses only for this question.

  1. Construct ΔABC, where AB = 3.5 cm, BC = 6 cm and ∠ABC = 60°.
  2. Construct the locus of points inside the triangle which are equidistant from BA and BC.
  3. Construct the locus of points inside the triangle which are equidistant from B and C.
  4. Mark the point P which is equidistant from AB, BC and also equidistant from B and C. Measure and record the length of PB.

Draw an ∠ABC = 60°, having AB = 4.6 cm and BC = 5 cm. Find a point P equidistant from AB and BC; and also equidistant from A and B. 


Describe the locus of the moving end of the minute hand of a clock. 


Describe the locus of a runner, running around a circular track and always keeping a distance of 1.5 m from the inner edge. 


Describe the locus of points at distances greater than 4 cm from a given point. 


Describe the locus of points at distances less than or equal to 2.5 cm from a given point. 


In  Δ ABC, the perpendicular bisector of AB and AC meet at 0. Prove that O is equidistant from the three vertices. Also, prove that if M is the mid-point of BC then OM meets BC at right angles. 


Find the locus of points which are equidistant from three non-collinear points.


Show that the locus of the centres of all circles passing through two given points A and B, is the perpendicular bisector of the line segment AB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×