English

In Fig. ∠Acb= 90° and Cd ⊥ Ab, Prove that Cd 2 = Bo × Ad. 3 a B C D Fig. - Mathematics

Advertisements
Advertisements

Question

In the following Figure ∠ACB= 90° and CD ⊥ AB, prove that  CD2  = BD × AD

Sum

Solution

Given that: CD ⊥ AB 

∠ACB = 90° 

To prove : CD= BD × AD 

Using pythagoras Theorem in Δ ACD 

AC2 = AD2 +CD..........(1)

Using pythagoras Theorem in ΔCDB

CB2 = BD2+CD2 .....(2) 

Similarly in ΔABC, 

As AB = AD + DB 

Since ,AB = AD +BD ......(4)

Squaring both sides of equation (4), we get

(AB)2 = (AD+BD)2

Since, AB2 = AD2 +BD2 +2×BD×AD

From equation (3) we get 

AC2 +BC2=AD2+BD2+2 × BD × AD 

Substituting the value of AC2 from equation (1) and the value  of BC2 from equation  (2), we get

AD2 +CD2 +BD2 + CD2 +AD2 +BD2 +2×BD×AD

Since ,2 CD2 = 2 × BD × AD

Hence , CD2 = BD × AD

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 30/1/1

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×