English

In Figure 2, Pq is a Chord of Length 8 Cm of a Circle of Radius 5 Cm. the Tangents at P and Q Intersect at a Point T. Find the Lengths of Tp and Tq. - Mathematics

Advertisements
Advertisements

Question

PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T. Find the lengths of TP and TQ.

Sum

Solution

Given,
Radius, OP = 5 cm
PQ = 8 cm,
TP = TQ                               (Tangents drawn from a common point to a circle are equal)
Δ PTQ is isosceles. 
Let PQ and OT intersect at point M.
TO is the angle bisector of PTQ.
So, PMT = 90° PM = QM = 4 cm               ....  Perpendicular drawn from the center of the circle to the chord bisects the chord)

Given,
Radius, OP = 5 cm
PQ = 8 cm,
TP = TQ                               (Tangents drawn from a common point to a circle are equal)
Δ PTQ is isosceles. 
Let PQ and OT intersect at point M.
TO is the angle bisector of ∠PTQ.
So, ∠PMT = 90° ⇒ PM = QM = 4 cm               ....  Perpendicular drawn from the center of the circle to the chord bisects the chord)

In Δ PMO, 

OP2 = OM2 + PM2

⇒ 52 = OM2 + 42

⇒ OM = 3 cm

Let PT = x and TM = y

In Δ PMT, 

PT2 = TM2 + PM2

x2 = y2 + 16          .....(i)

In Δ TPO,

OT2 = PT2 + OP2 

(y + 3)2 = x2 + 52 

y2 + 9 + 6y = x2 + 25      ....(ii)

From (i) and (ii), we get

y2 + 9 + 6y = y2 + 16 + 25

6y = 32

y = `16/3` cm

substituting y = `16/3`in equation (i),

`"x"^2 = (16/3)^2 + 16`

`x^2 = 400/9`

`x = 20/3` cm

Therefore, PT = `20/3` cm 

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Foreign Set 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×