English

In the Following Figure; Ac = Cd; Bad = 110o And Acb = 74o. Prove That: Bc > Cd. - Mathematics

Advertisements
Advertisements

Question

In the following figure ; AC = CD; ∠BAD = 110o and ∠ACB = 74o.

Prove that: BC > CD.

Sum

Solution

∠ACB = 74°                             ...(i)[ Given ]
∠ACB + ∠ACD = 180°                ....[ BCD is a straight line ]
⇒ 74° + ∠ACD = 180°
⇒ ∠ACD = 106°                        …..(ii)

In ΔACD,
∠ACD + ∠ADC+ ∠CAD = 180°
Given that AC = CD
⇒ ∠ADC= ∠CAD
⇒ 106° + ∠CAD + ∠CAD = 180°     ....[From (ii)]
⇒ 2∠CAD = 74°
⇒ ∠CAD = 37° = ∠ADC                  ...(iii)

Now,
∠BAD = 110°                              ....[Given]
∠BAC + ∠CAD = 110°
∠BAC + 37° = 110°
∠ BAC = 73°                               ….(iv)

In ABC,
∠ B + ∠BAC + ∠ACB = 180°
∠B + 73° + 74° = 180°              ...[From (i) and (iv)]
∠B + 147°= 180°
∠B = 33°                                   …..(v)

∴ ∠BAC > ∠B                            ...[ From (iv) and (v)]
⇒ BC > AC
But,
AC = CD                                   ...[ Given ]
⇒ BC > CD

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Inequalities - Exercise 11 [Page 143]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 11 Inequalities
Exercise 11 | Q 8 | Page 143
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×