English

In the Following Figure, ∠Bac = 60 and ∠Abc = 65 Prove That: Cf > Af Dc > Df - Mathematics

Advertisements
Advertisements

Question

In the following figure, ∠BAC = 60o and ∠ABC = 65o.

Prove that:
(i) CF > AF
(ii) DC > DF

Sum

Solution

In ΔBEC,
∠B + ∠BEC + ∠BCE = 180°
∠B = 65°                     ...[Given]
∠BEC = 90°                 ...[CE is perpendicular to AB]

⇒ 65° + 90° + ∠BCE = 180°
⇒ ∠BCE = 180° - 155°
⇒ ∠BCE = 25°= ∠DCF  …(i)

In ΔCDF,
∠DCF + ∠FDC + ∠CFD = 180°
∠DCF = 25°                 ....[From (i)]
∠FDC = 90°                 ...[ AD is perpendicular to BC]

⇒ 25°+ 90°+ ∠CFD = 180°
⇒ ∠CFD = 180° - 115°
⇒ ∠CFD = 65°             …(ii)

Now, ∠AFC + ∠CFD = 180°  ....[AFD is a straight line]
⇒ ∠AFC + 65° = 180°
⇒ ∠AFC = 115°                     …(iii)

In ΔACE,
∠ACE + ∠CEA + ∠BAC = 180°
∠BAC = 60°                             ....[Given]

⇒ ∠CEA = 90°        ...[CE is perpendicular to AB]
⇒ ∠ACE + 90° + 60° = 180°
⇒ ∠ACE = 180° - 150°
∠ACE = 30°                      …(iv)

In ΔAFC,
∠AFC + ∠ACF + ∠FAC = 180°
∠AFC = 115°                    ....[From (iii)]
∠ACF = 30°                   ...[From (iv)]

⇒ 115° + 30° + ∠FAC = 180°
⇒ ∠FAC = 180° - 145°
⇒ ∠FAC = 35°               …(v)

In ΔAFC,
⇒ ∠FAC = 35°               ...[ From (v) ]
⇒ ∠ACF = 30°               ...[ From (iv) ]
∴ ∠FAC > ∠ACF
⇒ CF > AF

In Δ CDF,
∠DCF = 25°                ...[From (i)]
∠CFD = 65°                 ...[From (ii)]
∴ ∠CFD > ∠DCF
⇒ DC > DF

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Inequalities - Exercise 11 [Page 142]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 11 Inequalities
Exercise 11 | Q 7 | Page 142
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×