Advertisements
Advertisements
Question
In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.
Solution
The point which is equidistant from all the sides of a triangle is called the incentre of the triangle. Incentre of a triangle is the intersection point of the angle bisectors of the interior angles of that triangle.
Here, in ΔABC, we can find the incentre of this triangle by drawing the angle bisectors of the interior angles of this triangle. I is the point where these angle bisectors are intersecting each other. Therefore, I is the point equidistant from all the sides of ΔABC.
APPEARS IN
RELATED QUESTIONS
Arrange the sides of ∆BOC in descending order of their lengths. BO and CO are bisectors of angles ABC and ACB respectively.
In the following figure, write BC, AC, and CD in ascending order of their lengths.
Name the greatest and the smallest sides in the following triangles:
ΔABC, ∠ = 56°, ∠B = 64° and ∠C = 60°.
Name the smallest angle in each of these triangles:
In ΔPQR, PQ = 8.3cm, QR = 5.4cm and PR = 7.2cm
In ΔABC, the exterior ∠PBC > exterior ∠QCB. Prove that AB > AC.
For any quadrilateral, prove that its perimeter is greater than the sum of its diagonals.
ABCD is a trapezium. Prove that:
CD + DA + AB + BC > 2AC.
ABCD is a trapezium. Prove that:
CD + DA + AB > BC.
In the given figure, T is a point on the side PR of an equilateral triangle PQR. Show that PT < QT
Prove that in an isosceles triangle any of its equal sides is greater than the straight line joining the vertex to any point on the base of the triangle.