Advertisements
Advertisements
Question
In the given figure, M is the centre of the circle and seg KL is a tangent segment.
If MK = 12, KL = \[6\sqrt{3}\] then find –
(1) Radius of the circle.
(2) Measures of ∠K and ∠M.
Solution 1
(1)
The tangent at any point of a circle is perpendicular to the radius through the point of contact.
∴ ∠MLK = 90º
In right ∆MLK,
\[{MK}^2 = {ML}^2 + {LK}^2 \]
\[ \Rightarrow ML = \sqrt{{MK}^2 - {LK}^2}\]
\[ \Rightarrow ML = \sqrt{\left( 12 \right)^2 - \left( 6\sqrt{3} \right)^2}\]
\[ \Rightarrow ML = \sqrt{144 - 108}\]
\[ \Rightarrow ML = \sqrt{36} = 6 \] units
Thus, the radius of the circle is 6 units.
(2)
In right ∆MLK,
\[\tan\angle K = \frac{ML}{KL}\]
\[ \Rightarrow \tan\angle K = \frac{6}{6\sqrt{3}} = \frac{1}{\sqrt{3}}\]
\[ \Rightarrow \tan\angle K = \tan30°\]
\[ \Rightarrow \angle K = 30°\]
Using angle sum property, we have
\[\angle K + \angle L + \angle M = 180^\circ\]
\[ \Rightarrow 30^\circ + 90^\circ + \angle M = 180^\circ\]
\[ \Rightarrow 120^\circ + \angle M = 180^\circ\]
\[ \Rightarrow \angle M = 180^\circ - 120^\circ = 60^\circ\]
Thus, the measures of ∠K and ∠M are 30º and 60º, respectively.
Solution 2
(1)
The line KL is the tangent to the circle at point L and seg ML is the radius. ...[Given]
∴ ∠MLK = 90º .... (i) [Tangent theorem]
In right ∆MLK,
∠MLK=90°
\[{MK}^2 = {ML}^2 + {LK}^2 \] ...[Pythagoras theorem]
\[ \Rightarrow ML = \sqrt{{MK}^2 - {LK}^2}\]
\[ \Rightarrow ML = \sqrt{\left( 12 \right)^2 - \left( 6\sqrt{3} \right)^2}\]
\[ \Rightarrow ML = \sqrt{144 - 108}\]
\[ \Rightarrow ML = \sqrt{36} = 6 \] units. ...[Taking the square root of both sides]
Thus, the radius of the circle is 6 units.
(2)
In right ∆MLK,
\[\Rightarrow\mathrm{ML = \frac{1}{2} MK}\]
∴ ∠K = 30° ...(ii) [Converse of 30° – 60° – 90° theorem]
In ∆MLK,
∠L = 90° ...[From (i)]
∠K = 30° ...[From (ii)]
∴ ∠M = 60° ...[Remaining angle of △MLK]
Thus, the measures of ∠K and ∠M are 30º and 60º, respectively.
RELATED QUESTIONS
In the given figure, seg EF is a diameter and seg DF is a tangent segment. The radius of the circle is r. Prove that, DE × GE = 4r2
Four alternative answers for the following question is given. Choose the correct alternative.
Length of a tangent segment drawn from a point which is at a distance 12.5 cm from the centre of a circle is 12 cm, find the diameter of the circle.
Four alternative answers for the following question is given. Choose the correct alternative.
Seg XZ is a diameter of a circle. Point Y lies in its interior. How many of the following statements are true ? (i) It is not possible that ∠XYZ is an acute angle. (ii) ∠XYZ can’t be a right angle. (iii) ∠XYZ is an obtuse angle. (iv) Can’t make a definite statement for measure of ∠XYZ.
In the following figure ‘O’ is the centre of the circle.
∠AOB = 1100, m(arc AC) = 450.
Use the information and fill in the boxes with proper numbers.
(i) m(arcAXB) =
(ii)m(arcCAB) =
(iv)∠COB =
(iv)m(arcAYB) =
In the given figure, M is the centre of the circle and seg KL is a tangent segment. L is a point of contact. If MK = 12, KL = `6sqrt3`, then find the radius of the circle.
Prove the following theorem:
Tangent segments drawn from an external point to the circle are congruent.
Segment DP and segment DQ are tangent segments to the circle with center A. If DP = 7 cm. So find the length of the segment DQ.
The chords corresponding to congruent arcs of a circle are congruent. Prove the theorem by completing following activity.
Given: In a circle with centre B
arc APC ≅ arc DQE
To Prove: Chord AC ≅ chord DE
Proof: In ΔABC and ΔDBE,
side AB ≅ side DB ......`square`
side BC ≅ side `square` .....`square`
∠ABC ≅ ∠DBE ......[Measure of congruent arcs]
∆ABC ≅ ∆DBE ......`square`
Tangent segments drawn from an external point to a circle are congruent, prove this theorem. Complete the following activity.
Given: `square`
To Prove: `square`
Proof: Draw radius AP and radius AQ and complete the following proof of the theorem.
In ∆PAD and ∆QAD,
seg PA ≅ `square` .....[Radii of the same circle]
seg AD ≅ seg AD ......[`square`]
∠APD ≅ ∠AQD = 90° .....[Tangent theorem]
∴ ∆PAD ≅ ∆QAD ....[`square`]
∴ seg DP ≅ seg DQ .....[`square`]
In the adjoining figure, O is the center of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N. If (OR) = 10 cm and radius of the circle = 5 cm, then
(i) What is the length of each tangent segment?
(ii) What is the measure of ∠MRO?
(iii) What is the measure of ∠MRN?
The figure ΔABC is an isosceles triangle with a perimeter of 44 cm. The sides AB and BC are congruent and the length of the base AC is 12 cm. If a circle touches all three sides as shown in the figure, then find the length of the tangent segment drawn to the circle from point B.
If AB and CD are the common tangents in the circles of two unequal (different) radii, then show that seg AB ≅ seg CD.
Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects ∠MRN as well as ∠MON with the help of activity.
Proof: In ∆RMO and ∆RNO,
∠RMO ≅ ∠RNO = 90° ......[`square`]
hypt OR ≅ hypt OR ......[`square`]
seg OM ≅ seg `square` ......[Radii of the same circle]
∴ ∆RMO ≅ ∆RNO ......[`square`]
∠MOR ≅ ∠NOR
Similairy ∠MRO ≅ `square` ......[`square`]
Prove that, tangent segments drawn from an external point to the circle are congruent.
In a parallelogram ABCD, ∠B = 105°. Determine the measure of ∠A and ∠D.
In the following figure, XY = 10 cm and LT = 4 cm. Find the length of XT.
A circle touches side BC at point P of the ΔABC, from outside of the triangle. Further extended lines AC and AB are tangents to the circle at N and M respectively. Prove that : AM = `1/2` (Perimeter of ΔABC)