English
Karnataka Board PUCPUC Science Class 11

Light in certain cases may be considered as a stream of particles called photons. Each photon has a linear momentum h/λ where h is the Planck's constant and λ is the wavelength of the light. - Physics

Advertisements
Advertisements

Question

Light in certain cases may be considered as a stream of particles called photons. Each photon has a linear momentum h/λ where h is the Planck's constant and λ is the wavelength of the light. A beam of light of wavelength λ is incident on a plane mirror at an angle of incidence θ. Calculate the change in the linear momentum of a photon as the beam is reflected by the mirror.

Sum

Solution

It is given that:
Wavelength of light = λ
Momentum of each photon = h/λ
Angle of incidence = θ 

\[\vec{P}_{Incidence} = \left( \frac{h}{\lambda} \right) \cos \theta  \hat {i}- \left( \frac{h}{\lambda} \right) \sin \theta \hat j \]
\[ \vec{P}_{Reflected} = - \left( \frac{h}{\lambda} \right) \cos \theta \hat i - \left( \frac{h}{\lambda} \right) \sin \theta \hat j \]
\[\text{ The change in momentum will only be in the direction of x - axis i . e . , }\]
\[\left| \Delta P \right| = \left( \frac{h}{\lambda} \right) \cos \theta - \left( - \frac{h}{\lambda} \cos \theta \right)\]
\[ = \left( \frac{2h}{\lambda} \right) \cos \theta\]

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  Is there an error in this question or solution?
Chapter 9: Centre of Mass, Linear Momentum, Collision - Exercise [Page 161]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 21 | Page 161

RELATED QUESTIONS

Two bodies make an elastic head-on collision on a smooth horizontal table kept in a car. Do you expect a change in the result if the car is accelerated in a horizontal road because of the non inertial character of the frame? Does the equation "Velocity of separation = Velocity of approach" remain valid in an accelerating car? Does the equation "final momentum = initial momentum" remain valid in the accelerating car?


If the total mechanical energy of a particle is zero, is its linear momentum necessarily zero? Is it necessarily nonzero?


If the linear momentum of a particle is known, can you find its kinetic energy? If the kinetic energy of a particle is know can you find its linear momentum?


Use the definition of linear momentum from the previous question. Can we state the principle of conservation of linear momentum for a single particle?


A nucleus moving with a velocity \[\vec{v}\] emits an α-particle. Let the velocities of the α-particle and the remaining nucleus be v1 and v2 and their masses be m1 and m2


In an elastic collision
(a) the kinetic energy remains constant
(b) the linear momentum remains constant
(c) the final kinetic energy is equal to the initial kinetic energy
(d) the final linear momentum is equal to the initial linear momentum.


A uranium-238 nucleus, initially at rest, emits an alpha particle with a speed of 1.4 × 107m/s. Calculate the recoil speed of the residual nucleus thorium-234. Assume that the mass of a nucleus is proportional to the mass number.


A neutron initially at rest, decays into a proton, an electron, and an antineutrino. The ejected electron has a momentum of 1.4 × 10−26 kg-m/s and the antineutrino 6.4 × 10−27kg-m/s.

Find the recoil speed of the proton

(a) if the electron and the antineutrino are ejected along the same direction and

(b) if they are ejected along perpendicular directions. Mass of the proton = 1.67 × 10−27 kg. 


A gun is mounted on a railroad car. The mass of the car, the gun, the shells and the operator is  50 m where m is the mass of one shell. If the velocity of the shell with respect to the gun (in its state before firing) is 200 m/s, what is the recoil speed of the car after the second shot? Neglect friction.


A 60 kg man skating with a speed of 10 m/s collides with a 40 kg skater at rest and they cling to each other. Find the loss of kinetic energy during the collision.


A ball of mass m moving at a speed v makes a head-on collision with an identical ball at rest. The kinetic energy of the balls after the collision is three fourths of the original. Find the coefficient of restitution.  


A bullet of mass 20 g travelling horizontally with a speed of 500 m/s passes through a wooden block of mass 10.0 kg initially at rest on a level surface. The bullet emerges with a speed of 100 m/s and the block slides 20 cm on the surface before coming to rest. Find the friction coefficient between the block and the  surface (See figure).


A block of mass 200 g is suspended through a vertical spring. The spring is stretched by 1.0 cm when the block is in equilibrium. A particle of mass 120 g is dropped on the block from a height of 45 cm. The particle sticks to the block after the impact. Find the maximum extension of the spring. Take g = 10 m/s2.


Two mass m1 and m2 are connected by a spring of spring constant k and are placed on a frictionless horizontal surface. Initially the spring is stretched through a distance x0 when the system is released from rest. Find the distance moved by the two masses before they again come to rest. 


Two blocks of masses m1 and m2 are connected by a spring of spring constant k (See figure). The block of mass m2 is given a sharp impulse so that it acquires a velocity v0 towards right. Find (a) the velocity of the centre of mass, (b) the maximum elongation that the spring will suffer.


The friction coefficient between the horizontal surface and each of the block shown in figure is 0.20. The collision between the blocks is perfectly elastic. Find the separation between the two blocks when they come to rest. Take g = 10 m/s2.


The track shown is figure is frictionless. The block B of mass 2m is lying at rest and the block A or mass m is pushed along the track with some speed. The collision between Aand B is perfectly elastic. With what velocity should the block A be started to get the sleeping man awakened?  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×