English
Karnataka Board PUCPUC Science Class 11

Two Blocks of Masses M1 and M2 Are Connected by a Spring of Spring Constant K. the Block of Mass M2 is Given a Sharp Impulse So that It Acquires a Velocity V0 Towards Right. - Physics

Advertisements
Advertisements

Question

Two blocks of masses m1 and m2 are connected by a spring of spring constant k (See figure). The block of mass m2 is given a sharp impulse so that it acquires a velocity v0 towards right. Find (a) the velocity of the centre of mass, (b) the maximum elongation that the spring will suffer.

Sum

Solution

Given,
Velocity of mass, m2 = v0
Velocity of mass, m1 = 0 



(a) Velocity of centre of mass is given by,
\[v_{cm} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}\]

\[\Rightarrow v_{cm} = \frac{m_1 \times 0 + m_2 \times v_0}{m_1 + m_2}\]

\[ \Rightarrow v_{cm} = \frac{m_2 v_0}{m_1 + m_2}\]

(b) Let the maximum elongation in spring be x.

The spring attains maximum elongation when velocities of both the blocks become equal to the velocity of centre of mass.
i.e. v1 = v2 = vcm

On applying the law of conservation of energy, we can write:
Change in kinetic energy = Potential energy stored in spring

\[\Rightarrow \frac{1}{2} m_2 v_0^2 - \frac{1}{2}( m_1 + m_2 ) \left( \frac{m_2 v_0}{m_1 + m_2} \right)^2 = \frac{1}{2}k x^2 \]

\[ \Rightarrow m_2 v_0^2 \left( 1 - \frac{m_2}{m_1 + m_2} \right) = k x^2\] 

`Rightarrow = V_o[(m_1m_2)/((m_1+m_2)K)]^(1/2)`

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  Is there an error in this question or solution?
Chapter 9: Centre of Mass, Linear Momentum, Collision - Exercise [Page 163]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 50 | Page 163

RELATED QUESTIONS

Use the definition of linear momentum from the previous question. Can we state the principle of conservation of linear momentum for a single particle?


A bullet hits a block kept at rest on a smooth horizontal surface and gets embedded into it. Which of the following does not change?


Internal forces can change


A shell is fired from a cannon with a velocity V at an angle θ with the horizontal direction. At the highest point in its path, it explodes into two pieces of equal masses. One of the pieces retraces its path to the cannon. The speed of the other piece immediately after the explosion is


A ball hits a floor and rebounds after an inelastic collision. In this case
(a) the momentum of the ball just after the collision is same as that just before the collision
(b) the mechanical energy of the ball remains the same during the collision
(c) the total momentum of the ball and the earth is conserved
(d) the total energy of the ball and the earth remains the same


Two friends A and B (each weighing 40 kg) are sitting on a frictionless platform some distance d apart. A rolls a ball of mass 4 kg on the platform towards B which B catches. Then B rolls the ball towards A and A catches it. The ball keeps on moving back and forth between A and B. The ball has a fixed speed of 5 m/s on the platform. (a) Find the speed of A after he catches the ball for the first time. (c) Find the speeds of A and Bafter the all has made 5 round trips and is held by A. (d) How many times can A roll the ball? (e) Where is the centre of mass of the system "A + B + ball" at the end of the nth trip? 


In a gamma decay process, the internal energy of a nucleus of mass M decreases, a gamma photon of energy E and linear momentum E/c is emitted and the nucleus recoils. Find the decrease in internal energy. 


A block of mass 200 g is suspended through a vertical spring. The spring is stretched by 1.0 cm when the block is in equilibrium. A particle of mass 120 g is dropped on the block from a height of 45 cm. The particle sticks to the block after the impact. Find the maximum extension of the spring. Take g = 10 m/s2.


A bullet of mass 25 g is fired horizontally into a ballistic pendulum of mass 5.0 kg and gets embedded in it. If the centre of the pendulum rises by a distance of 10 cm, find the speed of the bullet.


A bullet of mass 20 g moving horizontally at a speed of 300 m/s is fired into a wooden block of mass 500 g suspended by a long string. The bullet crosses the block and emerges on the other side. If the centre of mass of the block rises through a height of 20.0 cm, find the speed of the bullet as it emerges from the block.


The blocks shown in figure have equal masses. The surface of A is smooth but that of Bhas a friction coefficient of 0.10 with the floor. Block A is moving at a speed of 10 m/s towards B which is kept at rest. Find the distance travelled by B if (a) the collision is perfectly elastic and (b) the collision is perfectly inelastic. 


The friction coefficient between the horizontal surface and each of the block shown in figure is 0.20. The collision between the blocks is perfectly elastic. Find the separation between the two blocks when they come to rest. Take g = 10 m/s2.


Suppose the particle of the previous problem has a mass m and a speed \[\nu\] before the collision and it sticks to the rod after the collision. The rod has a mass M. (a) Find the velocity of the centre of mass C of the system constituting "the rod plus the particle". (b) Find the velocity of the particle with respect to C before the collision. (c) Find the velocity of the rod with respect to C before the collision. (d) Find the angular momentum of the particle and of the rod about the centre of mass C before the collision. (e) Find the moment of inertia of the system about the vertical axis through the centre of mass C after the collision. (f) Find the velocity of the centre of mass C and the angular velocity of the system about the centre of mass after the collision.


A uniform rod pivoted at its upper end hangs vertically. It is displaced through an angle of 60° and then released. Find the magnitude of the force acting on a particle of mass dm at the tip of the rod when the rod makes an angle of 37° with the vertical.


A sphere starts rolling down an incline of inclination θ. Find the speed of its centre when it has covered a distance l.


The following figure shows a rough track, a portion of which is in the form of a cylinder of radius R. With what minimum linear speed should a sphere of radius r be set rolling on the horizontal part so that it completely goes round the circle on the cylindrical part.


The following figure shows a small spherical ball of mass m rolling down the loop track. The ball is released on the linear portion at a vertical height H from the lowest point. The circular part shown has a radius R.
(a) Find the kinetic energy of the ball when it is at a point A where the radius makes an angle θ with the horizontal.
(b) Find the radial and the tangential accelerations of the centre when the ball is at A.
(c) Find the normal force and the frictional force acting on the if ball if H = 60 cm, R = 10 cm, θ = 0 and m = 70 g.


A thin spherical shell of radius R lying on a rough horizontal surface is hit sharply and horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?


The track shown is figure is frictionless. The block B of mass 2m is lying at rest and the block A or mass m is pushed along the track with some speed. The collision between Aand B is perfectly elastic. With what velocity should the block A be started to get the sleeping man awakened?  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×