English
Karnataka Board PUCPUC Science Class 11

A bullet of mass 25 g is fired horizontally into a ballistic pendulum of mass 5.0 kg and gets embedded in it. If the centre of - Physics

Advertisements
Advertisements

Question

A bullet of mass 25 g is fired horizontally into a ballistic pendulum of mass 5.0 kg and gets embedded in it. If the centre of the pendulum rises by a distance of 10 cm, find the speed of the bullet.

Sum

Solution

Given:
Mass of bullet, m = 25 g = 0.025 kg 
Mass of ballistic pendulum, M = 5 kg
Vertical displacement, h = 10 cm = 0.1 m

Let the bullet strikes the pendulum with a velocity u.
Let the final velocity be v.

Using the law of conservation of linear momentum, we can write:

\[mu = (M + m)v\]

\[ \Rightarrow v = \frac{m}{(M + m)}u\]

\[ \Rightarrow v = \frac{0 . 25}{5 . 025} \times u = \frac{u}{201}\]
Applying the law of conservation of energy, we get:
\[\left( \frac{1}{2} \right)(M + m) v^2 = (M + m)gh\]

\[ \Rightarrow \frac{u^2}{(201 )^2} = 2 \times 10 \times 0 . 1\]

\[ \Rightarrow u = 201 \times \sqrt{2} = 280 \text{ m/s}\]

The bullet strikes the pendulum with a velocity of 280 m/s.

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  Is there an error in this question or solution?
Chapter 9: Centre of Mass, Linear Momentum, Collision - Exercise [Page 163]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 47 | Page 163

RELATED QUESTIONS

A bob suspended from the ceiling of a car which is accelerating on a horizontal road. The bob stays at rest with respect to the car with the string making an angle θ with the vertical. The linear momentum of the bob as seen from the road is increasing with time. Is it a violation of conservation of linear momentum? If not, where is the external force changes the linear momentum?


Use the definition of linear momentum from the previous question. Can we state the principle of conservation of linear momentum for a single particle?


When a nucleus at rest emits a beta particle, it is found that the velocities of the recoiling nucleus and the beta particle are not along the same straight line. How can this be possible in view of the principle of conservation of momentum?


In one-dimensional elastic collision of equal masses, the velocities are interchanged. Can velocities in a one-dimensional collision be interchanged if the masses are not equal?


Consider the following two statements:

(A)  The linear momentum of a particle is independent of the frame of reference.

(B) The kinetic energy of a particle is independent of the frame of reference.


The quantities remaining constant in a collisions are


A shell is fired from a cannon with a velocity V at an angle θ with the horizontal direction. At the highest point in its path, it explodes into two pieces of equal masses. One of the pieces retraces its path to the cannon. The speed of the other piece immediately after the explosion is


A block moving in air breaks in two parts and the parts separate
(a) the total momentum must be conserved
(b) the total kinetic energy must be conserved
(c) the total momentum must change
(d) the total kinetic energy must change


A ball hits a floor and rebounds after an inelastic collision. In this case
(a) the momentum of the ball just after the collision is same as that just before the collision
(b) the mechanical energy of the ball remains the same during the collision
(c) the total momentum of the ball and the earth is conserved
(d) the total energy of the ball and the earth remains the same


A man of mass 50 kg starts moving on the earth and acquires a speed 1.8 m/s. With what speed does the earth recoil? Mass of earth = 6 × 1024 kg.


Light in certain cases may be considered as a stream of particles called photons. Each photon has a linear momentum h/λ where h is the Planck's constant and λ is the wavelength of the light. A beam of light of wavelength λ is incident on a plane mirror at an angle of incidence θ. Calculate the change in the linear momentum of a photon as the beam is reflected by the mirror.


A gun is mounted on a railroad car. The mass of the car, the gun, the shells and the operator is  50 m where m is the mass of one shell. If the velocity of the shell with respect to the gun (in its state before firing) is 200 m/s, what is the recoil speed of the car after the second shot? Neglect friction.


In a typical Indian Bugghi (a luxury cart drawn by horses), a wooden plate is fixed on the rear on which one person can sit. A bugghi of mass 200 kg is moving at a speed of 10 km/h. As it overtakes a school boy walking at a speed of 4 km/h, the boy sits on the wooden plate. If the mass of the boy is 25 kg, what will be the plate. If the mass of the boy is 25 kg, what will be the new velocity of the bugghi ?  


In a gamma decay process, the internal energy of a nucleus of mass M decreases, a gamma photon of energy E and linear momentum E/c is emitted and the nucleus recoils. Find the decrease in internal energy. 


A bullet of mass 20 g travelling horizontally with a speed of 500 m/s passes through a wooden block of mass 10.0 kg initially at rest on a level surface. The bullet emerges with a speed of 100 m/s and the block slides 20 cm on the surface before coming to rest. Find the friction coefficient between the block and the  surface (See figure).


Two blocks of masses m1 and m2 are connected by a spring of spring constant k (See figure). The block of mass m2 is given a sharp impulse so that it acquires a velocity v0 towards right. Find (a) the velocity of the centre of mass, (b) the maximum elongation that the spring will suffer.


A small disc is set rolling with a speed \[\nu\] on the horizontal part of the track of the previous problem from right to left. To what height will it climb up the curved part?


A thin spherical shell of radius R lying on a rough horizontal surface is hit sharply and horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×