English
Karnataka Board PUCPUC Science Class 11

A Bullet of Mass 20 G Moving Horizontally at a Speed of 300 M/S is Fired into a Wooden Block of Mass 500 G Suspended by a Long String. the Bullet Crosses the Block and Emerges on the Other Side - Physics

Advertisements
Advertisements

Question

A bullet of mass 20 g moving horizontally at a speed of 300 m/s is fired into a wooden block of mass 500 g suspended by a long string. The bullet crosses the block and emerges on the other side. If the centre of mass of the block rises through a height of 20.0 cm, find the speed of the bullet as it emerges from the block.

Sum

Solution

Given:
Mass of bullet, m = 20 gm = 0.02 kg
Horizontal speed of the bullet, u = 300 m/s 
Mass of wooden block, M = 500 gm = 0.5 kg

Let the bullet emerges out with velocity v.
Let the velocity of the block be v'.

Using the law of conservation of momentum, we get:
mu = Mv' + mv    ...(1)

Now, applying the work-energy principle for the block after the collision, we get:

\[0 - \left( \frac{1}{2} \right)M \times \left( v' \right)^2 = - Mgh\]

\[ \Rightarrow (v' )^2 = 2gh\]

\[ v' = \sqrt{2gh}\]

\[ = \sqrt{20 \times 10 \times 0 . 2} = 2 \text{ m/s}\]
On substituting the value of v' in equation (1), we get:

\[0 . 02 \times 300 = 0 . 5 \times 2 + 0 . 02 \times v\]

\[ \Rightarrow v = \frac{6 - 1}{0 . 02} = \frac{5}{0 . 02}\]

\[ \Rightarrow v = 250 \text{ m/s}\]

\[0 . 02 \times 300 = 0 . 5 \times 2 + 0 . 02 \times v\]

\[ \Rightarrow v = \frac{6 - 1}{0 . 02} = \frac{5}{0 . 02}\]

\[ \Rightarrow v = 250 \text{ m/s}\]
Hence, the speed of the bullet as it emerges out from the block is 250 m/s.

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  Is there an error in this question or solution?
Chapter 9: Centre of Mass, Linear Momentum, Collision - Exercise [Page 163]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 48 | Page 163

RELATED QUESTIONS

If the linear momentum of a particle is known, can you find its kinetic energy? If the kinetic energy of a particle is know can you find its linear momentum?


A van is standing on a frictionless portion of a horizontal road. To start the engine, the vehicle must be set in motion in the forward direction. How can be persons sitting inside the van do it without coming out and pushing from behind?


In one-dimensional elastic collision of equal masses, the velocities are interchanged. Can velocities in a one-dimensional collision be interchanged if the masses are not equal?


Consider the following two statements:

(A) Linear momentum of a system of particles is zero.

(B) Kinetic energy of a system of particles is zero.


The quantities remaining constant in a collisions are


A nucleus moving with a velocity \[\vec{v}\] emits an α-particle. Let the velocities of the α-particle and the remaining nucleus be v1 and v2 and their masses be m1 and m2


A block moving in air breaks in two parts and the parts separate
(a) the total momentum must be conserved
(b) the total kinetic energy must be conserved
(c) the total momentum must change
(d) the total kinetic energy must change


A neutron initially at rest, decays into a proton, an electron, and an antineutrino. The ejected electron has a momentum of 1.4 × 10−26 kg-m/s and the antineutrino 6.4 × 10−27kg-m/s.

Find the recoil speed of the proton

(a) if the electron and the antineutrino are ejected along the same direction and

(b) if they are ejected along perpendicular directions. Mass of the proton = 1.67 × 10−27 kg. 


A 60 kg man skating with a speed of 10 m/s collides with a 40 kg skater at rest and they cling to each other. Find the loss of kinetic energy during the collision.


A ball of mass m moving at a speed v makes a head-on collision with an identical ball at rest. The kinetic energy of the balls after the collision is three fourths of the original. Find the coefficient of restitution.  


Two friends A and B (each weighing 40 kg) are sitting on a frictionless platform some distance d apart. A rolls a ball of mass 4 kg on the platform towards B which B catches. Then B rolls the ball towards A and A catches it. The ball keeps on moving back and forth between A and B. The ball has a fixed speed of 5 m/s on the platform. (a) Find the speed of A after he catches the ball for the first time. (c) Find the speeds of A and Bafter the all has made 5 round trips and is held by A. (d) How many times can A roll the ball? (e) Where is the centre of mass of the system "A + B + ball" at the end of the nth trip? 


Two mass m1 and m2 are connected by a spring of spring constant k and are placed on a frictionless horizontal surface. Initially the spring is stretched through a distance x0 when the system is released from rest. Find the distance moved by the two masses before they again come to rest. 


Two blocks of masses m1 and m2 are connected by a spring of spring constant k (See figure). The block of mass m2 is given a sharp impulse so that it acquires a velocity v0 towards right. Find (a) the velocity of the centre of mass, (b) the maximum elongation that the spring will suffer.


A metre stick is held vertically with one end on a rough horizontal floor. It is gently allowed to fall on the floor. Assuming that the end at the floor does not slip, find the angular speed of the rod when it hits the floor.


A uniform rod pivoted at its upper end hangs vertically. It is displaced through an angle of 60° and then released. Find the magnitude of the force acting on a particle of mass dm at the tip of the rod when the rod makes an angle of 37° with the vertical.


A sphere starts rolling down an incline of inclination θ. Find the speed of its centre when it has covered a distance l.


A thin spherical shell of radius R lying on a rough horizontal surface is hit sharply and horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?


The track shown is figure is frictionless. The block B of mass 2m is lying at rest and the block A or mass m is pushed along the track with some speed. The collision between Aand B is perfectly elastic. With what velocity should the block A be started to get the sleeping man awakened?  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×