Advertisements
Advertisements
Question
PQRS is a parallelogram. L and M are points on PQ and SR respectively such that PL = MR.
Show that LM and QS bisect each other.
Solution
Given: PL = MR ...(i)
To prove SR = PQ ...(ii) (parallelogram opposite sides)
SP - PQ and SR - MR
LQ = SM ...(iii)
In ΔLOQ & ΔMOS
∠LQO = ∠MSO ....( alternate interior angles )
∠OLQ = ∠OMS ....( alternate interior angles )
LQ = SM ...(from (iii))
ΔLOQ ≅ ∠MSO ...(by ASA congruence)
Then, OL = OM
OQ = OS ...(by c.p.c.t.c)
Hence, LM and QS bisect each other.
APPEARS IN
RELATED QUESTIONS
In quadrilateral ACBD, AC = AD and AB bisects ∠A (See the given figure). Show that ΔABC ≅ ΔABD. What can you say about BC and BD?
You want to show that ΔART ≅ ΔPEN,
If you have to use SSS criterion, then you need to show
1) AR =
2) RT =
3) AT =
In ΔABC, ∠A = 30°, ∠B = 40° and ∠C = 110°
In ΔPQR, ∠P = 30°, ∠Q = 40° and ∠R = 110°
A student says that ΔABC ≅ ΔPQR by AAA congruence criterion. Is he justified? Why or why not?
In Δ ABC, ∠B = 35°, ∠C = 65° and the bisector of ∠BAC meets BC in P. Arrange AP, BP and CP in descending order.
If ABC and DEF are two triangles such that AC = 2.5 cm, BC = 5 cm, ∠C = 75°, DE = 2.5 cm, DF = 5cm and ∠D = 75°. Are two triangles congruent?
The perpendicular bisectors of the sides of a triangle ABC meet at I.
Prove that: IA = IB = IC.
In the figure, given below, triangle ABC is right-angled at B. ABPQ and ACRS are squares.
Prove that:
(i) ΔACQ and ΔASB are congruent.
(ii) CQ = BS.
In the following figure, OA = OC and AB = BC.
Prove that: ΔAOD≅ ΔCOD
In a triangle, ABC, AB = BC, AD is perpendicular to side BC and CE is perpendicular to side AB.
Prove that: AD = CE.
Which of the following is not a criterion for congruence of triangles?