Advertisements
Advertisements
Question
Show that A(1, 2), (1, 6), C(1 + 2 `sqrt(3)`, 4) are vertices of a equilateral triangle
Solution
Distance between two points = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`
By distance formula,
AB = `sqrt((1- 1)^2 + (6 - 2)^2`
= `sqrt(0^2 + 4^2)`
= `sqrt(4^2)`
= 4 ......(i)
BC = `sqrt((1 + 2sqrt(3) - 1)^2 + (4 - 6)^2`
= `sqrt((2sqrt(3))^2 + (-2)^2`
= `sqrt(12 + 4)`
= `sqrt(16)`
= 4 .....(ii)
AC = `sqrt((1 + 2sqrt(3) - 1)^2 + (4 -2)^2`
= `sqrt((2sqrt(3))^2 + 2^2`
= `sqrt(12 + 4)`
= `sqrt(16)`
= 4 ......(iii)
∴ AB = BC = AC ......[From (i), (ii) and (iii)]
∴ ∆ABC is an equilateral triangle.
∴ Points A, B and C are the vertices of an equilateral triangle.
APPEARS IN
RELATED QUESTIONS
Show that the points (a, a), (–a, –a) and (– √3 a, √3 a) are the vertices of an equilateral triangle. Also find its area.
Find the distance between the following pair of points:
(asinα, −bcosα) and (−acos α, bsin α)
If A (-1, 3), B (1, -1) and C (5, 1) are the vertices of a triangle ABC, find the length of the median through A.
Find the distance between the following pair of points.
L(5, –8), M(–7, –3)
If the point P(2, 1) lies on the line segment joining points A(4, 2) and B(8, 4), then ______.
Find the distance between the following point :
(sin θ , cos θ) and (cos θ , - sin θ)
P and Q are two points lying on the x - axis and the y-axis respectively . Find the coordinates of P and Q if the difference between the abscissa of P and the ordinates of Q is 1 and PQ is 5 units.
A(2, 5), B(-2, 4) and C(-2, 6) are the vertices of a triangle ABC. Prove that ABC is an isosceles triangle.
Find the distance between the following pairs of point:
`(sqrt(3)+1,1)` and `(0, sqrt(3))`
The distance between the points (3, 1) and (0, x) is 5. Find x.
Prove that the points A (1, -3), B (-3, 0) and C (4, 1) are the vertices of an isosceles right-angled triangle. Find the area of the triangle.
Points A (-3, -2), B (-6, a), C (-3, -4) and D (0, -1) are the vertices of quadrilateral ABCD; find a if 'a' is negative and AB = CD.
The distances of point P (x, y) from the points A (1, - 3) and B (- 2, 2) are in the ratio 2: 3.
Show that: 5x2 + 5y2 - 34x + 70y + 58 = 0.
Show that P(– 2, 2), Q(2, 2) and R(2, 7) are vertices of a right angled triangle
Find a point which is equidistant from the points A(–5, 4) and B(–1, 6)? How many such points are there?
If (– 4, 3) and (4, 3) are two vertices of an equilateral triangle, find the coordinates of the third vertex, given that the origin lies in the interior of the triangle.
Find distance between points P(– 5, – 7) and Q(0, 3).
By distance formula,
PQ = `sqrt(square + (y_2 - y_1)^2`
= `sqrt(square + square)`
= `sqrt(square + square)`
= `sqrt(square + square)`
= `sqrt(125)`
= `5sqrt(5)`
In a GPS, The lines that run east-west are known as lines of latitude, and the lines running north-south are known as lines of longitude. The latitude and the longitude of a place are its coordinates and the distance formula is used to find the distance between two places. The distance between two parallel lines is approximately 150 km. A family from Uttar Pradesh planned a round trip from Lucknow (L) to Puri (P) via Bhuj (B) and Nashik (N) as shown in the given figure below. |
Based on the above information answer the following questions using the coordinate geometry.
- Find the distance between Lucknow (L) to Bhuj (B).
- If Kota (K), internally divide the line segment joining Lucknow (L) to Bhuj (B) into 3 : 2 then find the coordinate of Kota (K).
- Name the type of triangle formed by the places Lucknow (L), Nashik (N) and Puri (P)
[OR]
Find a place (point) on the longitude (y-axis) which is equidistant from the points Lucknow (L) and Puri (P).
Show that points A(–1, –1), B(0, 1), C(1, 3) are collinear.
Read the following passage:
Use of mobile screen for long hours makes your eye sight weak and give you headaches. Children who are addicted to play "PUBG" can get easily stressed out. To raise social awareness about ill effects of playing PUBG, a school decided to start 'BAN PUBG' campaign, in which students are asked to prepare campaign board in the shape of a rectangle: One such campaign board made by class X student of the school is shown in the figure. |
Based on the above information, answer the following questions:
- Find the coordinates of the point of intersection of diagonals AC and BD.
- Find the length of the diagonal AC.
-
- Find the area of the campaign Board ABCD.
OR - Find the ratio of the length of side AB to the length of the diagonal AC.
- Find the area of the campaign Board ABCD.