English

State Gauss's law on electrostatics and drive an expression for the electric field due to a long straight thin uniformly charged wire (linear charge density λ) at a point lying - Physics

Advertisements
Advertisements

Question

Answer the following question.
State Gauss's law on electrostatics and drive expression for the electric field due to a long straight thin uniformly charged wire (linear charge density λ) at a point lying at a distance r from the wire.

Answer in Brief

Solution

Gauss' Law states that the net electric flux through any closed surface is equal to `1/epsilon_0` times the net electric charge within that closed surface.

`oint  vec" E".d vec" s" = (q_(enclosed))/epsilon_o`

In the diagram, we have taken a  cylindrical gaussian surface of radius = r and length = l.
The net charge enclosed inside the gaussian surface `q_(enclosed) = lambdal`
By symmetry, we can say that the Electric field will be in radially outward direction.

According to gauss' law,

`oint  vec"E".d  vec"s" = q_(enclosed)/epsilon_o`

`int_1 vec"E" .d  vec"s" + int_2  vec"E" .d  vec"s" + int_3  vec"E". d  vec"s" = (lambdal)/epsilon_o`

`int_1  vec"E". d  vec"s"  &  int_3  vec"E". d  vec"s"  "are zero", "Since"  vec"E"  "is perpendicular to"  d  vec"s"`

`int_2  vec"E" . d  vec"s" = (lambdal)/epsilon_o`

`"at"  2,  vec"E" and d  vec"s"  "are in the same direction, we can write"`

`E.2pirl = (lambdal)/epsilon_o`

`E = lambda/(2piepsilon_o r)`

shaalaa.com
Gauss’s Law
  Is there an error in this question or solution?
2019-2020 (February) Delhi (Set 2)

RELATED QUESTIONS

State and explain Gauss’s law.


A point charge +10 μC is a distance 5 cm directly above the centre of a square of side 10 cm, as shown in the Figure. What is the magnitude of the electric flux through the square? (Hint: Think of the square as one face of a cube with edge 10 cm.) 


Gaussian surface cannot pass through discrete charge because ____________.


q1, q2, q3 and q4 are point charges located at points as shown in the figure and S is a spherical gaussian surface of radius R. Which of the following is true according to the Gauss' law?


Gauss' law helps in ______


Five charges q1, q2, q3, q4, and q5 are fixed at their positions as shown in figure. S is a Gaussian surface. The Gauss’s law is given by `oint_s E.ds = q/ε_0`

Which of the following statements is correct?


If there were only one type of charge in the universe, then ______.

  1. `oint_s` E.dS ≠ 0 on any surface.
  2. `oint_s` E.dS = 0 if the charge is outside the surface.
  3. `oint_s` E.dS could not be defined.
  4. `oint_s` E.dS = `q/ε_0` if charges of magnitude q were inside the surface.

Refer to the arrangement of charges in figure and a Gaussian surface of radius R with Q at the centre. Then

  1. total flux through the surface of the sphere is `(-Q)/ε_0`.
  2. field on the surface of the sphere is `(-Q)/(4 piε_0 R^2)`.
  3. flux through the surface of sphere due to 5Q is zero.
  4. field on the surface of sphere due to –2Q is same everywhere.

In 1959 Lyttleton and Bondi suggested that the expansion of the Universe could be explained if matter carried a net charge. Suppose that the Universe is made up of hydrogen atoms with a number density N, which is maintained a constant. Let the charge on the proton be: ep = – (1 + y)e where e is the electronic charge.

  1. Find the critical value of y such that expansion may start.
  2. Show that the velocity of expansion is proportional to the distance from the centre.

A charge Q is placed at the centre of a cube. The electric flux through one of its faces is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×