English

The standard e.m.f of the following cell is 0.463 V - Chemistry

Advertisements
Advertisements

Question

The standard e.m.f of the following cell is 0.463 V

`Cu|Cu_(1m)^(++)`

What is the standard potential of Cu electrode?

(A) 1.137 V

(B) 0.337 V

(C) 0.463 V

(D) - 0.463 V

Solution

(b) 0.337 V

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March)

APPEARS IN

RELATED QUESTIONS

Arrange the following reducing agents in the order of increasing strength under standard state conditions. Justify the answer 

Element

Al(s)

Cu(s)

Cl(aq)

Ni(s)

 

Eo

-1.66V

0.34V

1.36V

-0.26V

 


Calculate Ecell and ΔG for the following at 28°C :

Mg(s) + Sn2+( 0.04M ) → Mg2+( 0.06M ) + Sn(s)

cell = 2.23V. Is the reaction spontaneous ?


Calculate emf of the following cell at 25°C:

\[\ce{Sn/Sn^2+ (0.001 M) || H+ (0.01 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]

Given: \[\ce{E^\circ(Sn^2+/sn) = -0.14 V, E^\circ H+/H2 = 0.00 V (log 10 = 1)}\]


Calculate e.m.f of the following cell at 298 K:

2Cr(s) + 3Fe2+ (0.1M) → 2Cr3+ (0.01M) + 3 Fe(s)

Given: E°(Cr3+ | Cr) = – 0.74 VE° (Fe2+ | Fe) = – 0.44 V


Calculate emf of the following cell at 25 °C :

Fe|Fe2+(0.001 M)| |H+(0.01 M)|H2(g) (1 bar)|Pt (s)

E°(Fe2+| Fe)0.44 V E°(H+ | H20.00 V


 
 

Calculate e.m.f. and ∆G for the following cell:

Mg (s) |Mg2+ (0.001M) || Cu2+ (0.0001M) | Cu (s)

`"Given :" E_((Mg^(2+)"/"Mg))^0=−2.37 V, E_((Cu^(2+)"/"Cu))^0=+0.34 V.`

 

 
 

Given the standard electrode potentials,

\[\ce{K+/K}\] = −2.93 V, \[\ce{Ag+/Ag}\] = 0.80 V,

\[\ce{Hg^{2+}/Hg}\] = 0.79 V

\[\ce{Mg^{2+}/Mg}\] = −2.37 V, \[\ce{Cr^{3+}/Cr}\] = −0.74 V

Arrange these metals in their increasing order of reducing power.


Depict the galvanic cell in which the reaction \[\ce{Zn(s) + 2Ag+(aq) → Zn^{2+}(aq) + 2Ag(s)}\] takes place. Further show:

  1. Which of the electrode is negatively charged?
  2. The carriers of the current in the cell.
  3. Individual reaction at each electrode.

In the representation of the galvanic cell, the ions in the same phase are separated by a _______.


Draw a neat and labelled diagram of the lead storage battery.


Calculate the emf of the following cell at 25°C :

\[{E^0}_\left( {Zn}^{2 +} /Zn \right) = - 0 . 76 V, {E^0}_\left( H^+ / H_2 \right) = 0 . 00 V\]

 


Galvanic or a voltaic cell converts the chemical energy liberated during a redox reaction to ____________.


Standard hydrogen electrode operated under standard conditions of 1 atm Hpressure, 298 K, and pH = 0 has a cell potential of ____________.


Which cell will measure standard electrode potential of copper electrode?


Using the data given below find out the strongest reducing agent.

`"E"_("Cr"_2"O"_7^(2-)//"Cr"^(3+))^⊖` = 1.33 V  `"E"_("Cl"_2//"Cl"^-) = 1.36` V

`"E"_("MnO"_4^-//"Mn"^(2+))` = 1.51 V  `"E"_("Cr"^(3+)//"Cr")` = - 0.74 V


Consider the figure and answer the following question.

If cell ‘A’ has ECell = 0.5V and cell ‘B’ has ECell = 1.1V then what will be the reactions at anode and cathode?


Represent the cell in which the following reaction takes place.The value of E˚ for the cell is 1.260 V. What is the value of Ecell?

\[\ce{2Al (s) + 3Cd^{2+} (0.1M) -> 3Cd (s) + 2Al^{3+} (0.01M)}\]


Which is the correct order of second ionization potential of C, N, O and F in the following?


The potential of a hydrogen electrode at PH = 10 is


Standard reduction potentials (E°) of Cd2+, respectively which is the strongest reducing agent 


The emf of a galvanic cell, with electrode potential of Zn2+ = - 0.76 V and that of Cu2+ = 0.34 V, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×