English

Arrange the following reducing agents in the order of increasing strength under standard state conditions - Chemistry

Advertisements
Advertisements

Question

Arrange the following reducing agents in the order of increasing strength under standard state conditions. Justify the answer 

Element

Al(s)

Cu(s)

Cl(aq)

Ni(s)

 

Eo

-1.66V

0.34V

1.36V

-0.26V

 

Solution

Cl < Cu < Ni < Al

Reason: Substances which have lower electrode potential are stronger reducing agents, while those which have high electrode potential are stronger oxidising agents.

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March)

APPEARS IN

RELATED QUESTIONS

Draw a neat and well labelled diagram of primary reference electrode.


Calculate Ecell and ΔG for the following at 28°C :

Mg(s) + Sn2+( 0.04M ) → Mg2+( 0.06M ) + Sn(s)

cell = 2.23V. Is the reaction spontaneous ?


Can copper sulphate solution be stored in an iron vessel? Explain.


The standard e.m.f of the following cell is 0.463 V

`Cu|Cu_(1m)^(++)`

What is the standard potential of Cu electrode?

(A) 1.137 V

(B) 0.337 V

(C) 0.463 V

(D) - 0.463 V


Calculate emf of the following cell at 25°C:

\[\ce{Sn/Sn^2+ (0.001 M) || H+ (0.01 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]

Given: \[\ce{E^\circ(Sn^2+/sn) = -0.14 V, E^\circ H+/H2 = 0.00 V (log 10 = 1)}\]


Calculate e.m.f of the following cell at 298 K:

2Cr(s) + 3Fe2+ (0.1M) → 2Cr3+ (0.01M) + 3 Fe(s)

Given: E°(Cr3+ | Cr) = – 0.74 VE° (Fe2+ | Fe) = – 0.44 V


 
 

Calculate e.m.f. and ∆G for the following cell:

Mg (s) |Mg2+ (0.001M) || Cu2+ (0.0001M) | Cu (s)

`"Given :" E_((Mg^(2+)"/"Mg))^0=−2.37 V, E_((Cu^(2+)"/"Cu))^0=+0.34 V.`

 

 
 

Given the standard electrode potentials,

\[\ce{K+/K}\] = −2.93 V, \[\ce{Ag+/Ag}\] = 0.80 V,

\[\ce{Hg^{2+}/Hg}\] = 0.79 V

\[\ce{Mg^{2+}/Mg}\] = −2.37 V, \[\ce{Cr^{3+}/Cr}\] = −0.74 V

Arrange these metals in their increasing order of reducing power.


Depict the galvanic cell in which the reaction \[\ce{Zn(s) + 2Ag+(aq) → Zn^{2+}(aq) + 2Ag(s)}\] takes place. Further show:

  1. Which of the electrode is negatively charged?
  2. The carriers of the current in the cell.
  3. Individual reaction at each electrode.

In the representation of the galvanic cell, the ions in the same phase are separated by a _______.


Galvanic or a voltaic cell converts the chemical energy liberated during a redox reaction to ____________.


Standard electrode potential is measured taking the concentrations of all the species involved in a half-cell is ____________.


Standard hydrogen electrode operated under standard conditions of 1 atm Hpressure, 298 K, and pH = 0 has a cell potential of ____________.


The difference between the electrode potentials of two electrodes when no current is drawn through the cell is called ______.


Using the data given below find out the strongest reducing agent.

`"E"_("Cr"_2"O"_7^(2-)//"Cr"^(3+))^⊖` = 1.33 V  `"E"_("Cl"_2//"Cl"^-) = 1.36` V

`"E"_("MnO"_4^-//"Mn"^(2+))` = 1.51 V  `"E"_("Cr"^(3+)//"Cr")` = - 0.74 V


What does the negative sign in the expression `"E"^Θ ("Zn"^(2+))//("Zn")` = − 0.76 V mean?


Assertion: Cu is less reactive than hydrogen.

Reason: `E_((Cu^(2+))/(Cu))^Θ` is negative.


Consider the figure and answer the following question.

If cell ‘A’ has ECell = 0.5V and cell ‘B’ has ECell = 1.1V then what will be the reactions at anode and cathode?


Represent the cell in which the following reaction takes place.The value of E˚ for the cell is 1.260 V. What is the value of Ecell?

\[\ce{2Al (s) + 3Cd^{2+} (0.1M) -> 3Cd (s) + 2Al^{3+} (0.01M)}\]


The standard electrode potential of the two half cells are given below:

\[\ce{Ni^{2+} + 2e^{-} -> Ni, E_0 = - 0.25 Volt}\]

\[\ce{Zn^{2+} + 2e^{-} -> Zn, E_0 = - 0.77 Volt}\]

The voltage of cell formed by combining the two half cells would be?


The potential of a hydrogen electrode at PH = 10 is


Standard reduction potentials (E°) of Cd2+, respectively which is the strongest reducing agent 


A voltaic cell is made by connecting two half cells represented by half equations below:

\[\ce{Sn^{2+}_{ (aq)} + 2e^- -> Sn_{(s)}}\], E0 = − 0.14 V

\[\ce{Fe^{3+}_{ (aq)} + e^- -> Fe^{2+}_{ (aq)}}\], E0 = + 0.77 V

Which statement is correct about this voltaic cell?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×