English
Karnataka Board PUCPUC Science Class 11

When a Tyre Bursts, the Air Coming Out is Cooler than the Surrounding Air. Explain. - Physics

Advertisements
Advertisements

Question

When a tyre bursts, the air coming out is cooler than the surrounding air. Explain.

Short Note

Solution

When a tyre bursts, adiabatic expansion of air takes place. The pressure inside the tyre is greater than the atmospheric pressure of the surrounding due to which the expansion of air occurs with some work done against the surrounding leading to decrease in the internal energy of the air present inside the tyre. This decrease of internal energy leads to fall in temperature of the inside air. Hence, the air coming out is cooler than that of the surrounding.

shaalaa.com
Heat, Internal Energy and Work
  Is there an error in this question or solution?
Chapter 4: Laws of Thermodynamics - Short Answers [Page 60]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 4 Laws of Thermodynamics
Short Answers | Q 11 | Page 60

RELATED QUESTIONS

Explain why Two bodies at different temperatures T1 and T2, if brought in thermal contact, do not necessarily settle to the mean temperature (T1 + T2)/2.


Explain why Air pressure in a car tyre increases during driving.


The final volume of a system is equal to the initial volume in a certain process. Is the work done by the system necessarily zero? Is it necessarily nonzero?


An ideal gas is pumped into a rigid container having diathermic walls so that the temperature remains constant. In a certain time interval, the pressure in the container is doubled. Is the internal energy of the contents of the container also doubled in the interval ?


Refer to figure. Let ∆U1 and ∆U2 be the changes in internal energy of the system in the process A and B. Then _____________ .


Consider the following two statements.

(A) If heat is added to a system, its temperature must increase.

(B) If positive work is done by a system in a thermodynamic process, its volume must increase.


A mixture of fuel and oxygen is burned in a constant-volume chamber surrounded by a water bath. It was noticed that the temperature of water is increased during the process. Treating the mixture of fuel and oxygen as the system,

  1. Has heat been transferred?
  2. Has work been done?
  3. What is the sign of ∆U?

What is the energy associated with the random, disordered motion of the molecules of a system called as?


One gram of water (1 cm3) becomes 1671 cm3 of steam at a pressure of 1 atm. The latent heat of vaporization at this pressure is 2256 J/g. Calculate the external work and the increase in internal energy. 


A cylinder containing one gram molecule of the gas was compressed adiabatically until its temperature rose from 27°C to 97°C. Calculate the work done and heat produced in the gas (𝛾 = 1.5).


derive the relation between the change in internal energy (∆U), work is done (W), and heat (Q). 


In a thermodynamic system, working substance is ideal gas. Its internal energy is in the form of ______.


Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

What is the change in internal energy of the gas?


A person of mass 60 kg wants to lose 5kg by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1 kg of fat is burnt on expending 7000 kilo calories, how many times must he go up and down to reduce his weight by 5 kg?


n mole of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes:

A `→` B: Isothermal expansion at temperature T so that the volume is doubled from V1 to V2 = 2V1 and pressure changes from P1 to P2.

B `→` C: Isobaric compression at pressure P2 to initial volume V1.

C `→` A: Isochoric change leading to change of pressure from P2 to P1.

Total workdone in the complete cycle ABCA is ______.


The internal energy of one mole of argon is ______.


The molar specific heat of He at constant volume is 12.47 J/mol.K. Two moles of He are heated at constant pressure. So the rise in temperature is 10 K. Find the increase in internal energy of the gas.


A system releases 125 kJ of heat while 104 kJ work is done on the system. Calculate the change in internal energy.


Explain the change in internal energy of a thermodynamic system (the gas) by heating it.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×