Advertisements
Advertisements
Show that the function `f(x)=|x-3|,x in R` is continuous but not differentiable at x = 3.
Concept: undefined > undefined
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Concept: undefined > undefined
Advertisements
Find the values of p and q for which
f(x) = `{((1-sin^3x)/(3cos^2x),`
is continuous at x = π/2.
Concept: undefined > undefined
`sin^-1 1/2-2sin^-1 1/sqrt2`
Concept: undefined > undefined
`sin^-1{cos(sin^-1 sqrt3/2)}`
Concept: undefined > undefined
Find the domain of the following function:
`f(x)=sin^-1x^2`
Concept: undefined > undefined
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Concept: undefined > undefined
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Concept: undefined > undefined
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Concept: undefined > undefined
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Concept: undefined > undefined
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Concept: undefined > undefined
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Concept: undefined > undefined
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Concept: undefined > undefined
Find the set of values of `cosec^-1(sqrt3/2)`
Concept: undefined > undefined
Find the domain of `f(x)=cotx+cot^-1x`
Concept: undefined > undefined
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Concept: undefined > undefined
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Concept: undefined > undefined
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Concept: undefined > undefined
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Concept: undefined > undefined
Test the continuity of the function on f(x) at the origin:
\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right|}, & x \neq 0 \\ 1 , & x = 0\end{cases}\]
Concept: undefined > undefined