मराठी
Karnataka Board PUCPUC Science 2nd PUC Class 12

PUC Science 2nd PUC Class 12 - Karnataka Board PUC Question Bank Solutions for Mathematics

Advertisements
[object Object]
[object Object]
विषय
मुख्य विषय
अध्याय
Advertisements
Advertisements
Mathematics
< prev  1 to 20 of 6436  next > 

Show that the function `f(x)=|x-3|,x in R` is continuous but not differentiable at x = 3.

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).

[0.08] Applications of the Integrals
Chapter: [0.08] Applications of the Integrals
Concept: undefined > undefined

Advertisements

Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

`sin^-1  1/2-2sin^-1  1/sqrt2`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

`sin^-1{cos(sin^-1  sqrt3/2)}`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Find the domain of the following function:

`f(x)=sin^-1x^2`

 

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Find the domain of the following function:

`f(x) = sin^-1x + sinx`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Find the set of values of `cosec^-1(sqrt3/2)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Find the domain of `f(x)=cotx+cot^-1x`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`cot^-1{2cos(sin^-1  sqrt3/2)}`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`

[0.02] Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
Concept: undefined > undefined

Test the continuity of the function on f(x) at the origin: 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right|}, & x \neq 0 \\ 1 , & x = 0\end{cases}\] 

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined
< prev  1 to 20 of 6436  next > 
Advertisements
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×