Advertisements
Advertisements
प्रश्न
600 परिवारों की साप्ताहिक आय नीचे सारणीबद्ध है:
साप्ताहिक आय (रू में) |
परिवारों की संख्या |
0 – 1000 | 250 |
1000 – 2000 | 190 |
2000 – 3000 | 100 |
3000 – 4000 | 40 |
4000 – 5000 | 15 |
5000 – 6000 | 5 |
कुल | 600 |
माध्यम आय अभिकलित कीजिए।
उत्तर
साप्ताहिक आय (रू में) |
परिवारों की संख्या `(bb(f_i))` |
संचयी आवृत्ति (cf) |
0 – 1000 | 250 | 250 |
1000 – 2000 | 190 | 250 + 190 = 400 |
2000 – 3000 | 100 | 440 + 100 = 540 |
3000 – 4000 | 40 | 540 + 40 = 580 |
4000 – 5000 | 15 | 580 + 15 = 595 |
5000 – 6000 | 5 | 595 + 5 = 600 |
प्रश्न के अनुसार,
n = 600
∴ `n/2 = 600/2 = 300`
संचयी आवृत्ति 440 अंतराल 1000 – 2000 में निहित है।
इसलिए, निम्न माध्यिका वर्ग, l = 1000
f = 190,
cf = 250,
कक्षा की चौड़ाई, h = 1000
और कुल अवलोकन n = 600
∴ माध्यिका = `l + ((n/2 - cf))/f xx h`
= `1000 + ((300 - 250))/190 xx 1000`
= `1000 + 50/190 xx 1000`
= `1000 + 5000/9`
= 1000 + 263.15
= 1263.15
अतः, औसत आय 1263.15 रुपये है।
APPEARS IN
संबंधित प्रश्न
एक पौधे की 40 पत्तियों की लंबाइयाँ निकटतम मिलीमिटरों में मापी जाती है तथा प्राप्त आँकड़ों को निम्नलिखित सारणी के रुप में निरुपित किया जाता है:
लंबाई (mm में) | पत्तियों की संख्या |
118 − 126 | 3 |
127 − 135 | 5 |
136 − 144 | 9 |
145 − 153 | 12 |
154 − 162 | 5 |
163 − 171 | 4 |
172 − 180 | 2 |
पत्तियों की माध्यक लंबाई ज्ञात कीजिए।
संकेत: माध्यक ज्ञात करने के लिए, आँकड़ो को सतत वर्ग अंतरालों में बदलना पड़ेगा, क्योकिं सूत्र में वर्ग 117.5 - 126.5 , 126.5 - 135.5 ,…,171.5 - 180.5 अंतरालों को सतत माना गया है। तब ये वर्ग में बदल जाते है।
नीचे दिया हुआ बंटन एक कक्षा के 30 विद्यार्थियों के भार दर्शा रहा है। विद्यार्थियों का माध्यक भार ज्ञात कीजिए।
वजन (किलो में) | 40−45 | 45−50 | 50−55 | 55−60 | 60−65 | 65−70 | 70−75 |
छात्रों की संख्या | 2 | 3 | 8 | 6 | 6 | 3 | 2 |
वर्ग |
0 – 5 |
6 – 11 |
12 – 17 |
18 – 23 |
24 – 29 |
बारंबारता |
13 |
10 |
15 |
8 |
11 |
बंटन में, माध्यक वर्ग की उपरि सीमा है-
वर्ग |
65 – 85 |
85 – 105 |
105 – 125 |
125 – 145 |
145 – 165 |
165 – 185 |
185 – 205 |
बारंबारता |
4 |
5 |
13 |
20 |
14 |
7 |
4 |
बंटन के लिए, माध्यक वर्ग की उपरि सीमा और बहुलक वर्ग की निम्न सीमा का अंतर है-
अवर्गीकृत आँकड़ों का माध्यक और इन्हीं आँकड़ों को वर्गीकृत करने के बाद परिकलित माध्यक सदैव बराबर होते हैं। क्या आप सोचते हैं कि यह कथन सत्य है? कारण दीजिए।
निम्नलिखित बंटन के लिए, माध्य प्राप्तांक ज्ञात कीजिए:
प्राप्तांक | विद्यार्थियों की संख्या |
0 और उससे अधिक | 80 |
10 और उससे अधिक | 77 |
20 और उससे अधिक | 72 |
30 और उससे अधिक | 65 |
40 और उससे अधिक | 55 |
50 और उससे अधिक | 43 |
60 और उससे अधिक | 28 |
70 और उससे अधिक | 16 |
80 और उससे अधिक | 10 |
90 और उससे अधिक | 8 |
100 और उससे अधिक | 0 |
70 पैकेटों में चाय के भार नीचे दी सारणी में दर्शाए गये हैं:
भार (ग्राम में) | पैकेटों की संख्या |
200 – 201 | 13 |
201 – 202 | 27 |
202 – 203 | 18 |
203 – 204 | 10 |
204 – 205 | 1 |
205 – 206 | 1 |
इन आँकड़ों के लिए, 'से कम प्रकार' का तोरण खींचिए तथा इसका प्रयोग माध्यक भार ज्ञात करने में कीजए।
किसी शहर में एक वर्ष के 66 दिन की वर्षा का रिकार्ड नीचे सारणी में दिया गया है:
वर्षा (cm में) |
0 – 10 |
10 – 20 |
20 – 30 |
30 – 40 |
40 – 50 |
50 – 60 |
दिनों की संख्या |
22 |
10 |
8 |
15 |
5 |
6 |
'से कम प्रकार' और 'से अधिक प्रकार के' तोरणों का प्रयोग करके माध्यक वर्षा परिकलित कीजिए।
किसी मोबाइल फोन पर किये गये कॉलों के समय-काल का बारंबारता बंटन नीचे दिया गया है:
समय काल (सेकंडों में) |
कॉलों की संख्या |
95 – 125 | 14 |
125 – 155 | 22 |
155 – 185 | 28 |
185 – 215 | 21 |
215 – 245 | 15 |
इन कॉलों का औसत समय काल (सेकंडों में) परिकलित कीजिए तथा साथ ही संचयी बारंबारता वक्र से माध्यक भी ज्ञात कीजिए।
एक स्कूल के 50 विद्यार्थियों ने भाला फेंक प्रतियोगिता में भाग लिया। फेंकी गयी दूरियाँ (मीटर में) नीचे दी गई हैं:
दूरी (m में) |
0 – 20 |
20 – 40 |
40 – 60 |
60 – 80 |
80 – 100 |
विद्यार्थियों की संख्या |
6 |
11 |
17 |
12 |
4 |
माध्यक के सूत्र का प्रयोग करते हुए, माध्यक दूरी ज्ञात कीजिए।