рд╣рд┐рдВрджреА

A Chord of a Circle Subtends an Angle ЁЭЬГ at the Centre of Circle. the Area of the Minor Segment Cut off by the Chord is One Eighth of the Area of Circle. Prove that 8 Sin`Theta/2 "Cos"Theta/2+Pi =(Pitheta)/45` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

A chord of a circle subtends an angle ЁЭЬГ at the centre of circle. The area of the minor segment cut off by the chord is one eighth of the area of circle. Prove that 8 sin`theta/2 "cos"theta/2+pi =(pitheta)/45`

рдЙрддреНрддрд░

Let radius of circle = r

Area of circle = ЁЭЬЛЁЭСЯ2

AB is a chord, OA, OB are joined drop OM ⊥ AB. This OM bisects AB as well as ∠AOB.

∠AOM = ∠MOB =`1/2(0) =theta/2`                        AB = 2AM

In ΔAOM, ∠AMO = 90°

`"Sin"theta/2=(AM)/(AD)⇒ AM = R."sin"theta/2`         AB = 2R sin`theta/2`

`"Cos"theta/2=(OM)/(AD)⇒ OM = R"cos"theta/2`

Area of segment cut off by AB = (area of sector) – (area of triangles)

=`theta/360× pir^2 −1/2`× ЁЭР┤ЁЭР╡ × ЁЭСВЁЭСА

`= r^2 [(pitheta)/360^@−1/2. 2"rsin"theta/2. R" cos"theta/2]`

`= R^2 [(pitheta)/360^@− "sin"theta/2. "cos"theta/2]`

Area of segment =`1/2`(ЁЭСОЁЭСЯЁЭСТЁЭСО ЁЭСЬЁЭСУ ЁЭСРЁЭСЦЁЭСЯЁЭСРЁЭСЩЁЭСТ)

`r^2 [(pitheta)/360− "sin"theta/2." cos"theta/2] =1/8pir^2`

`(8pitheta)/360^@− 8 "sin"theta/2. "cos"theta/2= pi`

`8 "sin"theta/2. "cos"theta/2+ pi =(pitheta)/45`

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 13: Areas Related to Circles - Exercise 13.3 [рдкреГрд╖реНрда рейрей]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 13 Areas Related to Circles
Exercise 13.3 | Q 10 | рдкреГрд╖реНрда рейрей
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×