हिंदी

A Man Observes a Car from the Top of a Tower, Which is Moving Towards the Tower with a Uniform Speed. If the Angle of Depression of the Car Changes from 30° to 45° in 12 Minutes, Find the Time Taken by the Car Now to Reach the Tower. - Mathematics

Advertisements
Advertisements

प्रश्न

A man observes a car from the top of a tower, which is moving towards the tower with a uniform speed. If the angle of depression of the car changes from 30° to 45° in 12 minutes, find the time taken by the car now to reach the tower.

उत्तर

Suppose AB be the tower of height h meters. Let C be the initial position of the car and let after 12 minutes the car be at D. It is given that the angles of depression at C and D are 30º and 45º respectively.

Let the speed of the car be v meter per minute. Then,

CD = distance travelled by the car in 12 minutes

CD = 12v meters

Suppose the car takes t minutes to reach the tower AB from D. Then DA = vt meters

In DAB, we have

`tan 45^@ = (AB)/(AD)`

`=> 1= h/(vt)`.....(i)

In ∆CAB, we have

`tan 30^@ = (AB)/(AB)`

`=> 1/sqrt3 = h/(vt + 12v)` 

`=> sqrt3t = vt + 12v` .....(ii)

Substituting the value of h from equation (i) in equation (ii), we get

`=> sqrt3t = t + 12`

`=> t = 12/(sqrt3 - 1) = 12/((sqrt3 - 1)) xx ((sqrt3 + 1))/((sqrt3 + 1)) = 6(sqrt3 + 1)`

t = 16.39 minutes

t = 16 minutes 23 seconds

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) All India Set 2

संबंधित प्रश्न

From the top of a lighthouse, an observer looks at a ship and finds the angle of depression to be 60° . If the height of the lighthouse is 90 meters, then find how far is that ship from the lighthouse? (√3 = 1.73)


PQ is a post of given height a, and AB is a tower at some distance. If α and β are the angles of elevation of B, the top of the tower, at P and Q respectively. Find the height of the tower and its distance from the post.


The angles of elevation of the top of a tower from two points at distance of 5 metres and 20 metres from the base of the tower and is the same straight line with it, are complementary. Find the height of the tower.


The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60° . At a point Y, 40m vertically above X, the angle of elevation is 45° . Find the height of tower PQ.


What is the angle of elevation of the Sun when the length of the shadow of a vetical pole is equal to its height?


The angle of depression of a car, standing on the ground, from the top of a 75 m tower, is 30°. The distance of the car from the base of the tower (in metres) is


From the top of a rock `50sqrt(3)` m high, the angle of depression of a car on the ground is observed to be 30°. Find the distance of the car from the rock


We all have seen the airplanes flying in the sky but might have not thought of how they actually reach the correct destination. Air Traffic Control (ATC) is a service provided by ground-based air traffic controllers who direct aircraft on the ground and through a given section of controlled airspace, and can provide advisory services to aircraft in non-controlled airspace. Actually, all this air traffic is managed and regulated by using various concepts based on coordinate geometry and trigonometry.

At a given instance, ATC finds that the angle of elevation of an airplane from a point on the ground is 60°. After a flight of 30 seconds, it is observed that the angle of elevation changes to 30°. The height of the plane remains constantly as `3000sqrt(3)` m. Use the above information to answer the questions that follow-

  1. Draw a neat labelled figure to show the above situation diagrammatically.
  2. What is the distance travelled by the plane in 30 seconds?
    OR
    Keeping the height constant, during the above flight, it was observed that after `15(sqrt(3) - 1)` seconds, the angle of elevation changed to 45°. How much is the distance travelled in that duration.
  3. What is the speed of the plane in km/hr.

Two men on either side of a cliff 75 m high observe the angles of elevation of the top of the cliff to be 30° and 60°. Find the distance between the two men.


At a point on level ground, the angle of elevation of a vertical tower is, found to be α such that tan α = `1/3`. After walking 100 m towards the tower, the angle of elevation β becomes such that tan β = `3/4`. Find the height of the tower. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×