हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Plate of Thickness T Made of a Material of Refractive Index µ is Placed in Front of One of the Slits in a Double Slit Experiment. - Physics

Advertisements
Advertisements

प्रश्न

A plate of thickness t made of a material of refractive index µ is placed in front of one of the slits in a double slit experiment. (a) Find the change in the optical path due to introduction of the plate. (b) What should be the minimum thickness t which will make the intensity at the centre of the fringe pattern zero? Wavelength of the light used is \[\lambda.\] Neglect any absorption of light in the plate.

योग

उत्तर

Given:-

Refractive index of the plate is μ.

The thickness of the plate is t.

Wavelength of the light is λ.

(a)

When the plate is placed in front of the slit, then the optical path difference is given by \[\left( \mu - 1 \right)t\]

(b) For zero intensity at the centre of the fringe pattern, there should be distractive interference at the centre.

So, the optical path difference should be = \[\frac{\lambda}{2}\]

\[i . e .   \left( \mu - 1 \right)  t = \frac{\lambda}{2}\]

\[ \Rightarrow t = \frac{\lambda}{2  \left( \mu - 1 \right)}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Light Waves - Exercise [पृष्ठ ३८१]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 17 Light Waves
Exercise | Q 13 | पृष्ठ ३८१

संबंधित प्रश्न

Show that the angular width of the first diffraction fringe is half that of the central fringe.


Using monochromatic light of wavelength λ in Young’s double slit experiment, the eleventh dark fringe is obtained on the screen for a phase difference of ______.


In a Young’s double-slit experiment, the slits are separated by 0.28 mm and the screen is placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2 cm. Determine the wavelength of light used in the experiment.


If one of two identical slits producing interference in Young’s experiment is covered with glass, so that the light intensity passing through it is reduced to 50%, find the ratio of the maximum and minimum intensity of the fringe in the interference pattern.


Write two characteristics features distinguish the diffractions pattern from the interference fringes obtained in Young’s double slit experiment.


In Young’s double slit experiment using monochromatic light of wavelength λ, the intensity of light at a point on the screen where path difference is λ, is K units. Find out the intensity of light at a point where path difference is λ/3.


In Young's double slit experiment, derive the condition for

(i) constructive interference and

(ii) destructive interference at a point on the screen.


How does an unpolarized light incident on a polaroid get polarized? Describe briefly, with the help of a necessary diagram, the polarization of light by reflection from a transparent medium.


If the source of light used in a Young's double slit experiment is changed from red to violet, ___________ .


A double slit S1 − S2 is illuminated by a coherent light of wavelength \[\lambda.\] The slits are separated by a distance d. A plane mirror is placed in front of the double slit at a distance D1 from it and a screen ∑ is placed behind the double slit at a distance D2 from it (see the following figure). The screen ∑ receives only the light reflected by the mirror. Find the fringe-width of the interference pattern on the screen.


In Young's double slit experiment using monochromatic light of wavelength 600 nm, 5th bright fringe is at a distance of 0·48 mm from the centre of the pattern. If the screen is at a distance of 80 cm from the plane of the two slits, calculate:
(i) Distance between the two slits.
(ii) Fringe width, i.e. fringe separation.


In Young's double-slit experiment, the two slits are separated by a distance of 1.5 mm, and the screen is placed 1 m away from the plane of the slits. A beam of light consisting of two wavelengths of 650 nm and 520 nm is used to obtain interference fringes.
Find the distance of the third bright fringe for λ = 520 nm on the screen from the central maximum.


When a beam of light is used to determine the position of an object, the maximum accuracy is achieved, if the light is ______.


In Young’s double slit experiment, what is the effect on fringe pattern if the slits are brought closer to each other?


"If the slits in Young's double slit experiment are identical, then intensity at any point on the screen may vary between zero and four times to the intensity due to single slit".

Justify the above statement through a relevant mathematical expression.


Two balls are projected at an angle θ and (90° − θ) to the horizontal with the same speed. The ratio of their maximum vertical heights is:


In Young's double slit experiment shown in figure S1 and S2 are coherent sources and S is the screen having a hole at a point 1.0 mm away from the central line. White light (400 to 700 nm) is sent through the slits. Which wavelength passing through the hole has strong intensity?


How will the interference pattern in Young's double-slit experiment be affected if the phase difference between the light waves emanating from the two slits S1 and S2 changes from 0 to π and remains constant?


Monochromatic green light of wavelength 5 × 10-7 m illuminates a pair of slits 1 mm apart. The separation of bright lines in the interference pattern formed on a screen 2 m away is ______.


In an interference experiment, a third bright fringe is obtained at a point on the screen with a light of 700 nm. What should be the wavelength of the light source in order to obtain the fifth bright fringe at the same point?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×